Private
_runOptional
checkpointerOptional
configOptional
interruptOptional
interruptProtected
lc_Optional
nameOptional
retryOptional
stepOptional
storeOptional
streamA map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.
The final serialized identifier for the module.
A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.
Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.
The function to be executed for each input value.
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>[]Optional
runManagers: (undefined | CallbackManagerForChainRun)[]Optional
batchOptions: RunnableBatchOptionsOptional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType> & { Optional
batchOptions: RunnableBatchOptionsA promise that resolves to the output values.
Protected
_callOptional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>> & { Protected
_getProtected
_prepareOptional
saved?: CheckpointTupleOptional
subgraphProtected
_separateOptional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>Optional
options: Partial<PregelOptions<Nn, Cc, Record<string, any>>>Protected
_streamProtected
_transformHelper method to transform an Iterator of Input values into an Iterator of
Output values, with callbacks.
Use this to implement stream()
or transform()
in Runnable subclasses.
Optional
runManager: CallbackManagerForChainRunOptional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>> & { Convert a runnable to a tool. Return a new instance of RunnableToolLike
which contains the runnable, name, description and schema.
Optional
description?: stringThe description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.
Optional
name?: stringThe name of the tool. If not provided, it will default to the name of the runnable.
The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.
An instance of RunnableToolLike
which is a runnable that can be used as a tool.
Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.
Array of inputs to each batch call.
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>> | Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>[]Either a single call options object to apply to each batch call or an array for each call.
Optional
batchOptions: RunnableBatchOptions & { An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>> | Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>[]Optional
batchOptions: RunnableBatchOptions & { Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>> | Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>[]Optional
batchOptions: RunnableBatchOptionsBind arguments to a Runnable, returning a new Runnable.
A new RunnableBinding that, when invoked, will apply the bound args.
Get the current state of the graph.
Optional
options: { Optional
subgraphs?: booleanGet the history of the state of the graph.
Optional
options: CheckpointListOptionsOptional
namespace: stringOptional
recurse: booleanUse getSubgraphsAsync instead. The async method will become the default in the next minor release.
Run the graph with a single input and config.
The input to the graph.
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>The configuration to use for the run.
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.
A runnable, function, or object whose values are functions or runnables.
A new runnable sequence.
Protected
prepareOptional
options: { Optional
skipStream graph steps for a single input.
The input to the graph.
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>The configuration to use for the run.
Generate a stream of events emitted by the internal steps of the runnable.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: string - Event names are of the format: on_[runnable_type]_(start|stream|end).name
: string - The name of the runnable that generated the event.run_id
: string - Randomly generated ID associated with the given execution of
the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a
parent runnable is assigned its own unique ID.tags
: string[] - The tags of the runnable that generated the event.metadata
: Record<string, any> - The metadata of the runnable that generated the event.data
: Record<string, any>Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
+----------------------+-----------------------------+------------------------------------------+
| event | input | output/chunk |
+======================+=============================+==========================================+
| on_chat_model_start | {"messages": BaseMessage[]} | |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_stream | | AIMessageChunk("hello") |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_end | {"messages": BaseMessage[]} | AIMessageChunk("hello world") |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_start | {'input': 'hello'} | |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_stream | | 'Hello' |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_end | 'Hello human!' | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_start | | |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_stream | | "hello world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_end | [Document(...)] | "hello world!, goodbye world!" |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_start | {"x": 1, "y": "2"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_end | | {"x": 1, "y": "2"} |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_start | {"query": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_end | {"query": "hello"} | [Document(...), ..] |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_start | {"question": "hello"} | |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_end | {"question": "hello"} | ChatPromptValue(messages: BaseMessage[]) |
+----------------------+-----------------------------+------------------------------------------+
The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.
In addition to the standard events above, users can also dispatch custom events.
Custom events will be only be surfaced with in the v2
version of the API!
A custom event has following format:
+-----------+------+------------------------------------------------------------+
| Attribute | Type | Description |
+===========+======+============================================================+
| name | str | A user defined name for the event. |
+-----------+------+------------------------------------------------------------+
| data | Any | The data associated with the event. This can be anything. |
+-----------+------+------------------------------------------------------------+
Here's an example:
import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";
const slowThing = RunnableLambda.from(async (someInput: string) => {
// Placeholder for some slow operation
await new Promise((resolve) => setTimeout(resolve, 100));
await dispatchCustomEvent("progress_event", {
message: "Finished step 1 of 2",
});
await new Promise((resolve) => setTimeout(resolve, 100));
return "Done";
});
const eventStream = await slowThing.streamEvents("hello world", {
version: "v2",
});
for await (const event of eventStream) {
if (event.event === "on_custom_event") {
console.log(event);
}
}
Optional
streamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">Optional
streamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
Optional
options: Partial<PregelOptions<Nn, Cc, ConfigurableFieldType>>Optional
streamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
Update the state of the graph with the given values, as if they came from
node as_node
. If as_node
is not provided, it will be set to the last node
that updated the state, if not ambiguous.
Optional
asNode: string | keyof NnCreate a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.
A new RunnableWithFallbacks.
Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.
The object containing the callback functions.
Optional
onCalled after the runnable finishes running, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Optional
onCalled if the runnable throws an error, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Optional
onCalled before the runnable starts running, with the Run object.
Optional
config: RunnableConfig<Record<string, any>>Add retry logic to an existing runnable.
Optional
fields: { Optional
onOptional
stopA new RunnableRetry that, when invoked, will retry according to the parameters.
Static
isStatic
lc_
A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.