Skip to content

Python SDK Reference

The LangGraph client implementations connect to the LangGraph API.

This module provides both asynchronous (LangGraphClient) and synchronous (SyncLanggraphClient) clients to interacting with the LangGraph API's core resources such as Assistants, Threads, Runs, and Cron jobs, as well as its persistent document Store.

LangGraphClient

Top-level client for LangGraph API.

Attributes:

  • assistants

    Manages versioned configuration for your graphs.

  • threads

    Handles (potentially) multi-turn interactions, such as conversational threads.

  • runs

    Controls individual invocations of the graph.

  • crons

    Manages scheduled operations.

  • store

    Interfaces with persistent, shared data storage.

Source code in libs/sdk-py/langgraph_sdk/client.py
class LangGraphClient:
    """Top-level client for LangGraph API.

    Attributes:
        assistants: Manages versioned configuration for your graphs.
        threads: Handles (potentially) multi-turn interactions, such as conversational threads.
        runs: Controls individual invocations of the graph.
        crons: Manages scheduled operations.
        store: Interfaces with persistent, shared data storage.
    """

    def __init__(self, client: httpx.AsyncClient) -> None:
        self.http = HttpClient(client)
        self.assistants = AssistantsClient(self.http)
        self.threads = ThreadsClient(self.http)
        self.runs = RunsClient(self.http)
        self.crons = CronClient(self.http)
        self.store = StoreClient(self.http)

HttpClient

Handle async requests to the LangGraph API.

Adds additional error messaging & content handling above the provided httpx client.

Attributes:

  • client (AsyncClient) –

    Underlying HTTPX async client.

Source code in libs/sdk-py/langgraph_sdk/client.py
class HttpClient:
    """Handle async requests to the LangGraph API.

    Adds additional error messaging & content handling above the
    provided httpx client.

    Attributes:
        client (httpx.AsyncClient): Underlying HTTPX async client.
    """

    def __init__(self, client: httpx.AsyncClient) -> None:
        self.client = client

    async def get(self, path: str, *, params: Optional[QueryParamTypes] = None) -> Any:
        """Send a GET request."""
        r = await self.client.get(path, params=params)
        try:
            r.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await r.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e
        return await adecode_json(r)

    async def post(self, path: str, *, json: Optional[dict]) -> Any:
        """Send a POST request."""
        if json is not None:
            headers, content = await aencode_json(json)
        else:
            headers, content = {}, b""
        r = await self.client.post(path, headers=headers, content=content)
        try:
            r.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await r.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e
        return await adecode_json(r)

    async def put(self, path: str, *, json: dict) -> Any:
        """Send a PUT request."""
        headers, content = await aencode_json(json)
        r = await self.client.put(path, headers=headers, content=content)
        try:
            r.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await r.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e
        return await adecode_json(r)

    async def patch(self, path: str, *, json: dict) -> Any:
        """Send a PATCH request."""
        headers, content = await aencode_json(json)
        r = await self.client.patch(path, headers=headers, content=content)
        try:
            r.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await r.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e
        return await adecode_json(r)

    async def delete(self, path: str, *, json: Optional[Any] = None) -> None:
        """Send a DELETE request."""
        r = await self.client.request("DELETE", path, json=json)
        try:
            r.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await r.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e

    async def stream(
        self,
        path: str,
        method: str,
        *,
        json: Optional[dict] = None,
        params: Optional[QueryParamTypes] = None,
    ) -> AsyncIterator[StreamPart]:
        """Stream results using SSE."""
        headers, content = await aencode_json(json)
        headers["Accept"] = "text/event-stream"
        headers["Cache-Control"] = "no-store"

        async with self.client.stream(
            method, path, headers=headers, content=content, params=params
        ) as res:
            # check status
            try:
                res.raise_for_status()
            except httpx.HTTPStatusError as e:
                body = (await res.aread()).decode()
                if sys.version_info >= (3, 11):
                    e.add_note(body)
                else:
                    logger.error(f"Error from langgraph-api: {body}", exc_info=e)
                raise e
            # check content type
            content_type = res.headers.get("content-type", "").partition(";")[0]
            if "text/event-stream" not in content_type:
                raise httpx.TransportError(
                    "Expected response header Content-Type to contain 'text/event-stream', "
                    f"got {content_type!r}"
                )
            # parse SSE
            decoder = SSEDecoder()
            async for line in aiter_lines_raw(res):
                sse = decoder.decode(line=line.rstrip(b"\n"))
                if sse is not None:
                    yield sse

get(path: str, *, params: Optional[QueryParamTypes] = None) -> Any async

Send a GET request.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def get(self, path: str, *, params: Optional[QueryParamTypes] = None) -> Any:
    """Send a GET request."""
    r = await self.client.get(path, params=params)
    try:
        r.raise_for_status()
    except httpx.HTTPStatusError as e:
        body = (await r.aread()).decode()
        if sys.version_info >= (3, 11):
            e.add_note(body)
        else:
            logger.error(f"Error from langgraph-api: {body}", exc_info=e)
        raise e
    return await adecode_json(r)

post(path: str, *, json: Optional[dict]) -> Any async

Send a POST request.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def post(self, path: str, *, json: Optional[dict]) -> Any:
    """Send a POST request."""
    if json is not None:
        headers, content = await aencode_json(json)
    else:
        headers, content = {}, b""
    r = await self.client.post(path, headers=headers, content=content)
    try:
        r.raise_for_status()
    except httpx.HTTPStatusError as e:
        body = (await r.aread()).decode()
        if sys.version_info >= (3, 11):
            e.add_note(body)
        else:
            logger.error(f"Error from langgraph-api: {body}", exc_info=e)
        raise e
    return await adecode_json(r)

put(path: str, *, json: dict) -> Any async

Send a PUT request.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def put(self, path: str, *, json: dict) -> Any:
    """Send a PUT request."""
    headers, content = await aencode_json(json)
    r = await self.client.put(path, headers=headers, content=content)
    try:
        r.raise_for_status()
    except httpx.HTTPStatusError as e:
        body = (await r.aread()).decode()
        if sys.version_info >= (3, 11):
            e.add_note(body)
        else:
            logger.error(f"Error from langgraph-api: {body}", exc_info=e)
        raise e
    return await adecode_json(r)

patch(path: str, *, json: dict) -> Any async

Send a PATCH request.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def patch(self, path: str, *, json: dict) -> Any:
    """Send a PATCH request."""
    headers, content = await aencode_json(json)
    r = await self.client.patch(path, headers=headers, content=content)
    try:
        r.raise_for_status()
    except httpx.HTTPStatusError as e:
        body = (await r.aread()).decode()
        if sys.version_info >= (3, 11):
            e.add_note(body)
        else:
            logger.error(f"Error from langgraph-api: {body}", exc_info=e)
        raise e
    return await adecode_json(r)

delete(path: str, *, json: Optional[Any] = None) -> None async

Send a DELETE request.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def delete(self, path: str, *, json: Optional[Any] = None) -> None:
    """Send a DELETE request."""
    r = await self.client.request("DELETE", path, json=json)
    try:
        r.raise_for_status()
    except httpx.HTTPStatusError as e:
        body = (await r.aread()).decode()
        if sys.version_info >= (3, 11):
            e.add_note(body)
        else:
            logger.error(f"Error from langgraph-api: {body}", exc_info=e)
        raise e

stream(path: str, method: str, *, json: Optional[dict] = None, params: Optional[QueryParamTypes] = None) -> AsyncIterator[StreamPart] async

Stream results using SSE.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def stream(
    self,
    path: str,
    method: str,
    *,
    json: Optional[dict] = None,
    params: Optional[QueryParamTypes] = None,
) -> AsyncIterator[StreamPart]:
    """Stream results using SSE."""
    headers, content = await aencode_json(json)
    headers["Accept"] = "text/event-stream"
    headers["Cache-Control"] = "no-store"

    async with self.client.stream(
        method, path, headers=headers, content=content, params=params
    ) as res:
        # check status
        try:
            res.raise_for_status()
        except httpx.HTTPStatusError as e:
            body = (await res.aread()).decode()
            if sys.version_info >= (3, 11):
                e.add_note(body)
            else:
                logger.error(f"Error from langgraph-api: {body}", exc_info=e)
            raise e
        # check content type
        content_type = res.headers.get("content-type", "").partition(";")[0]
        if "text/event-stream" not in content_type:
            raise httpx.TransportError(
                "Expected response header Content-Type to contain 'text/event-stream', "
                f"got {content_type!r}"
            )
        # parse SSE
        decoder = SSEDecoder()
        async for line in aiter_lines_raw(res):
            sse = decoder.decode(line=line.rstrip(b"\n"))
            if sse is not None:
                yield sse

AssistantsClient

Client for managing assistants in LangGraph.

This class provides methods to interact with assistants, which are versioned configurations of your graph.

Example:

client = get_client()
assistant = await client.assistants.get("assistant_id_123")
Source code in libs/sdk-py/langgraph_sdk/client.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
class AssistantsClient:
    """Client for managing assistants in LangGraph.

    This class provides methods to interact with assistants,
    which are versioned configurations of your graph.

    Example:

        client = get_client()
        assistant = await client.assistants.get("assistant_id_123")
    """

    def __init__(self, http: HttpClient) -> None:
        self.http = http

    async def get(self, assistant_id: str) -> Assistant:
        """Get an assistant by ID.

        Args:
            assistant_id: The ID of the assistant to get.

        Returns:
            Assistant: Assistant Object.

        Example Usage:

            assistant = await client.assistants.get(
                assistant_id="my_assistant_id"
            )
            print(assistant)

            ----------------------------------------------------

            {
                'assistant_id': 'my_assistant_id',
                'graph_id': 'agent',
                'created_at': '2024-06-25T17:10:33.109781+00:00',
                'updated_at': '2024-06-25T17:10:33.109781+00:00',
                'config': {},
                'metadata': {'created_by': 'system'}
            }

        """  # noqa: E501
        return await self.http.get(f"/assistants/{assistant_id}")

    async def get_graph(
        self, assistant_id: str, *, xray: Union[int, bool] = False
    ) -> dict[str, list[dict[str, Any]]]:
        """Get the graph of an assistant by ID.

        Args:
            assistant_id: The ID of the assistant to get the graph of.
            xray: Include graph representation of subgraphs. If an integer value is provided, only subgraphs with a depth less than or equal to the value will be included.

        Returns:
            Graph: The graph information for the assistant in JSON format.

        Example Usage:

            graph_info = await client.assistants.get_graph(
                assistant_id="my_assistant_id"
            )
            print(graph_info)

            --------------------------------------------------------------------------------------------------------------------------

            {
                'nodes':
                    [
                        {'id': '__start__', 'type': 'schema', 'data': '__start__'},
                        {'id': '__end__', 'type': 'schema', 'data': '__end__'},
                        {'id': 'agent','type': 'runnable','data': {'id': ['langgraph', 'utils', 'RunnableCallable'],'name': 'agent'}},
                    ],
                'edges':
                    [
                        {'source': '__start__', 'target': 'agent'},
                        {'source': 'agent','target': '__end__'}
                    ]
            }


        """  # noqa: E501
        return await self.http.get(
            f"/assistants/{assistant_id}/graph", params={"xray": xray}
        )

    async def get_schemas(self, assistant_id: str) -> GraphSchema:
        """Get the schemas of an assistant by ID.

        Args:
            assistant_id: The ID of the assistant to get the schema of.

        Returns:
            GraphSchema: The graph schema for the assistant.

        Example Usage:

            schema = await client.assistants.get_schemas(
                assistant_id="my_assistant_id"
            )
            print(schema)

            ----------------------------------------------------------------------------------------------------------------------------

            {
                'graph_id': 'agent',
                'state_schema':
                    {
                        'title': 'LangGraphInput',
                        '$ref': '#/definitions/AgentState',
                        'definitions':
                            {
                                'BaseMessage':
                                    {
                                        'title': 'BaseMessage',
                                        'description': 'Base abstract Message class. Messages are the inputs and outputs of ChatModels.',
                                        'type': 'object',
                                        'properties':
                                            {
                                             'content':
                                                {
                                                    'title': 'Content',
                                                    'anyOf': [
                                                        {'type': 'string'},
                                                        {'type': 'array','items': {'anyOf': [{'type': 'string'}, {'type': 'object'}]}}
                                                    ]
                                                },
                                            'additional_kwargs':
                                                {
                                                    'title': 'Additional Kwargs',
                                                    'type': 'object'
                                                },
                                            'response_metadata':
                                                {
                                                    'title': 'Response Metadata',
                                                    'type': 'object'
                                                },
                                            'type':
                                                {
                                                    'title': 'Type',
                                                    'type': 'string'
                                                },
                                            'name':
                                                {
                                                    'title': 'Name',
                                                    'type': 'string'
                                                },
                                            'id':
                                                {
                                                    'title': 'Id',
                                                    'type': 'string'
                                                }
                                            },
                                        'required': ['content', 'type']
                                    },
                                'AgentState':
                                    {
                                        'title': 'AgentState',
                                        'type': 'object',
                                        'properties':
                                            {
                                                'messages':
                                                    {
                                                        'title': 'Messages',
                                                        'type': 'array',
                                                        'items': {'$ref': '#/definitions/BaseMessage'}
                                                    }
                                            },
                                        'required': ['messages']
                                    }
                            }
                    },
                'config_schema':
                    {
                        'title': 'Configurable',
                        'type': 'object',
                        'properties':
                            {
                                'model_name':
                                    {
                                        'title': 'Model Name',
                                        'enum': ['anthropic', 'openai'],
                                        'type': 'string'
                                    }
                            }
                    }
            }

        """  # noqa: E501
        return await self.http.get(f"/assistants/{assistant_id}/schemas")

    async def get_subgraphs(
        self, assistant_id: str, namespace: Optional[str] = None, recurse: bool = False
    ) -> Subgraphs:
        """Get the schemas of an assistant by ID.

        Args:
            assistant_id: The ID of the assistant to get the schema of.

        Returns:
            Subgraphs: The graph schema for the assistant.

        """  # noqa: E501
        if namespace is not None:
            return await self.http.get(
                f"/assistants/{assistant_id}/subgraphs/{namespace}",
                params={"recurse": recurse},
            )
        else:
            return await self.http.get(
                f"/assistants/{assistant_id}/subgraphs",
                params={"recurse": recurse},
            )

    async def create(
        self,
        graph_id: Optional[str],
        config: Optional[Config] = None,
        *,
        metadata: Json = None,
        assistant_id: Optional[str] = None,
        if_exists: Optional[OnConflictBehavior] = None,
        name: Optional[str] = None,
    ) -> Assistant:
        """Create a new assistant.

        Useful when graph is configurable and you want to create different assistants based on different configurations.

        Args:
            graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration.
            config: Configuration to use for the graph.
            metadata: Metadata to add to assistant.
            assistant_id: Assistant ID to use, will default to a random UUID if not provided.
            if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood.
                Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing assistant).
            name: The name of the assistant. Defaults to 'Untitled' under the hood.

        Returns:
            Assistant: The created assistant.

        Example Usage:

            assistant = await client.assistants.create(
                graph_id="agent",
                config={"configurable": {"model_name": "openai"}},
                metadata={"number":1},
                assistant_id="my-assistant-id",
                if_exists="do_nothing",
                name="my_name"
            )
        """  # noqa: E501
        payload: Dict[str, Any] = {
            "graph_id": graph_id,
        }
        if config:
            payload["config"] = config
        if metadata:
            payload["metadata"] = metadata
        if assistant_id:
            payload["assistant_id"] = assistant_id
        if if_exists:
            payload["if_exists"] = if_exists
        if name:
            payload["name"] = name
        return await self.http.post("/assistants", json=payload)

    async def update(
        self,
        assistant_id: str,
        *,
        graph_id: Optional[str] = None,
        config: Optional[Config] = None,
        metadata: Json = None,
        name: Optional[str] = None,
    ) -> Assistant:
        """Update an assistant.

        Use this to point to a different graph, update the configuration, or change the metadata of an assistant.

        Args:
            assistant_id: Assistant to update.
            graph_id: The ID of the graph the assistant should use.
                The graph ID is normally set in your langgraph.json configuration. If None, assistant will keep pointing to same graph.
            config: Configuration to use for the graph.
            metadata: Metadata to merge with existing assistant metadata.
            name: The new name for the assistant.

        Returns:
            Assistant: The updated assistant.

        Example Usage:

            assistant = await client.assistants.update(
                assistant_id='e280dad7-8618-443f-87f1-8e41841c180f',
                graph_id="other-graph",
                config={"configurable": {"model_name": "anthropic"}},
                metadata={"number":2}
            )

        """  # noqa: E501
        payload: Dict[str, Any] = {}
        if graph_id:
            payload["graph_id"] = graph_id
        if config:
            payload["config"] = config
        if metadata:
            payload["metadata"] = metadata
        if name:
            payload["name"] = name
        return await self.http.patch(
            f"/assistants/{assistant_id}",
            json=payload,
        )

    async def delete(
        self,
        assistant_id: str,
    ) -> None:
        """Delete an assistant.

        Args:
            assistant_id: The assistant ID to delete.

        Returns:
            None

        Example Usage:

            await client.assistants.delete(
                assistant_id="my_assistant_id"
            )

        """  # noqa: E501
        await self.http.delete(f"/assistants/{assistant_id}")

    async def search(
        self,
        *,
        metadata: Json = None,
        graph_id: Optional[str] = None,
        limit: int = 10,
        offset: int = 0,
    ) -> list[Assistant]:
        """Search for assistants.

        Args:
            metadata: Metadata to filter by. Exact match filter for each KV pair.
            graph_id: The ID of the graph to filter by.
                The graph ID is normally set in your langgraph.json configuration.
            limit: The maximum number of results to return.
            offset: The number of results to skip.

        Returns:
            list[Assistant]: A list of assistants.

        Example Usage:

            assistants = await client.assistants.search(
                metadata = {"name":"my_name"},
                graph_id="my_graph_id",
                limit=5,
                offset=5
            )
        """
        payload: Dict[str, Any] = {
            "limit": limit,
            "offset": offset,
        }
        if metadata:
            payload["metadata"] = metadata
        if graph_id:
            payload["graph_id"] = graph_id
        return await self.http.post(
            "/assistants/search",
            json=payload,
        )

    async def get_versions(
        self,
        assistant_id: str,
        metadata: Json = None,
        limit: int = 10,
        offset: int = 0,
    ) -> list[AssistantVersion]:
        """List all versions of an assistant.

        Args:
            assistant_id: The assistant ID to get versions for.
            metadata: Metadata to filter versions by. Exact match filter for each KV pair.
            limit: The maximum number of versions to return.
            offset: The number of versions to skip.

        Returns:
            list[Assistant]: A list of assistants.

        Example Usage:

            assistant_versions = await client.assistants.get_versions(
                assistant_id="my_assistant_id"
            )

        """  # noqa: E501

        payload: Dict[str, Any] = {
            "limit": limit,
            "offset": offset,
        }
        if metadata:
            payload["metadata"] = metadata
        return await self.http.post(
            f"/assistants/{assistant_id}/versions", json=payload
        )

    async def set_latest(self, assistant_id: str, version: int) -> Assistant:
        """Change the version of an assistant.

        Args:
            assistant_id: The assistant ID to delete.
            version: The version to change to.

        Returns:
            Assistant: Assistant Object.

        Example Usage:

            new_version_assistant = await client.assistants.set_latest(
                assistant_id="my_assistant_id",
                version=3
            )

        """  # noqa: E501

        payload: Dict[str, Any] = {"version": version}

        return await self.http.post(f"/assistants/{assistant_id}/latest", json=payload)

get(assistant_id: str) -> Assistant async

Get an assistant by ID.

Parameters:

  • assistant_id (str) –

    The ID of the assistant to get.

Returns:

  • Assistant ( Assistant ) –

    Assistant Object.

Example Usage:

assistant = await client.assistants.get(
    assistant_id="my_assistant_id"
)
print(assistant)

----------------------------------------------------

{
    'assistant_id': 'my_assistant_id',
    'graph_id': 'agent',
    'created_at': '2024-06-25T17:10:33.109781+00:00',
    'updated_at': '2024-06-25T17:10:33.109781+00:00',
    'config': {},
    'metadata': {'created_by': 'system'}
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get(self, assistant_id: str) -> Assistant:
    """Get an assistant by ID.

    Args:
        assistant_id: The ID of the assistant to get.

    Returns:
        Assistant: Assistant Object.

    Example Usage:

        assistant = await client.assistants.get(
            assistant_id="my_assistant_id"
        )
        print(assistant)

        ----------------------------------------------------

        {
            'assistant_id': 'my_assistant_id',
            'graph_id': 'agent',
            'created_at': '2024-06-25T17:10:33.109781+00:00',
            'updated_at': '2024-06-25T17:10:33.109781+00:00',
            'config': {},
            'metadata': {'created_by': 'system'}
        }

    """  # noqa: E501
    return await self.http.get(f"/assistants/{assistant_id}")

get_graph(assistant_id: str, *, xray: Union[int, bool] = False) -> dict[str, list[dict[str, Any]]] async

Get the graph of an assistant by ID.

Parameters:

  • assistant_id (str) –

    The ID of the assistant to get the graph of.

  • xray (Union[int, bool], default: False ) –

    Include graph representation of subgraphs. If an integer value is provided, only subgraphs with a depth less than or equal to the value will be included.

Returns:

  • Graph ( dict[str, list[dict[str, Any]]] ) –

    The graph information for the assistant in JSON format.

Example Usage:

graph_info = await client.assistants.get_graph(
    assistant_id="my_assistant_id"
)
print(graph_info)

--------------------------------------------------------------------------------------------------------------------------

{
    'nodes':
        [
            {'id': '__start__', 'type': 'schema', 'data': '__start__'},
            {'id': '__end__', 'type': 'schema', 'data': '__end__'},
            {'id': 'agent','type': 'runnable','data': {'id': ['langgraph', 'utils', 'RunnableCallable'],'name': 'agent'}},
        ],
    'edges':
        [
            {'source': '__start__', 'target': 'agent'},
            {'source': 'agent','target': '__end__'}
        ]
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_graph(
    self, assistant_id: str, *, xray: Union[int, bool] = False
) -> dict[str, list[dict[str, Any]]]:
    """Get the graph of an assistant by ID.

    Args:
        assistant_id: The ID of the assistant to get the graph of.
        xray: Include graph representation of subgraphs. If an integer value is provided, only subgraphs with a depth less than or equal to the value will be included.

    Returns:
        Graph: The graph information for the assistant in JSON format.

    Example Usage:

        graph_info = await client.assistants.get_graph(
            assistant_id="my_assistant_id"
        )
        print(graph_info)

        --------------------------------------------------------------------------------------------------------------------------

        {
            'nodes':
                [
                    {'id': '__start__', 'type': 'schema', 'data': '__start__'},
                    {'id': '__end__', 'type': 'schema', 'data': '__end__'},
                    {'id': 'agent','type': 'runnable','data': {'id': ['langgraph', 'utils', 'RunnableCallable'],'name': 'agent'}},
                ],
            'edges':
                [
                    {'source': '__start__', 'target': 'agent'},
                    {'source': 'agent','target': '__end__'}
                ]
        }


    """  # noqa: E501
    return await self.http.get(
        f"/assistants/{assistant_id}/graph", params={"xray": xray}
    )

get_schemas(assistant_id: str) -> GraphSchema async

Get the schemas of an assistant by ID.

Parameters:

  • assistant_id (str) –

    The ID of the assistant to get the schema of.

Returns:

  • GraphSchema ( GraphSchema ) –

    The graph schema for the assistant.

Example Usage:

schema = await client.assistants.get_schemas(
    assistant_id="my_assistant_id"
)
print(schema)

----------------------------------------------------------------------------------------------------------------------------

{
    'graph_id': 'agent',
    'state_schema':
        {
            'title': 'LangGraphInput',
            '$ref': '#/definitions/AgentState',
            'definitions':
                {
                    'BaseMessage':
                        {
                            'title': 'BaseMessage',
                            'description': 'Base abstract Message class. Messages are the inputs and outputs of ChatModels.',
                            'type': 'object',
                            'properties':
                                {
                                 'content':
                                    {
                                        'title': 'Content',
                                        'anyOf': [
                                            {'type': 'string'},
                                            {'type': 'array','items': {'anyOf': [{'type': 'string'}, {'type': 'object'}]}}
                                        ]
                                    },
                                'additional_kwargs':
                                    {
                                        'title': 'Additional Kwargs',
                                        'type': 'object'
                                    },
                                'response_metadata':
                                    {
                                        'title': 'Response Metadata',
                                        'type': 'object'
                                    },
                                'type':
                                    {
                                        'title': 'Type',
                                        'type': 'string'
                                    },
                                'name':
                                    {
                                        'title': 'Name',
                                        'type': 'string'
                                    },
                                'id':
                                    {
                                        'title': 'Id',
                                        'type': 'string'
                                    }
                                },
                            'required': ['content', 'type']
                        },
                    'AgentState':
                        {
                            'title': 'AgentState',
                            'type': 'object',
                            'properties':
                                {
                                    'messages':
                                        {
                                            'title': 'Messages',
                                            'type': 'array',
                                            'items': {'$ref': '#/definitions/BaseMessage'}
                                        }
                                },
                            'required': ['messages']
                        }
                }
        },
    'config_schema':
        {
            'title': 'Configurable',
            'type': 'object',
            'properties':
                {
                    'model_name':
                        {
                            'title': 'Model Name',
                            'enum': ['anthropic', 'openai'],
                            'type': 'string'
                        }
                }
        }
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_schemas(self, assistant_id: str) -> GraphSchema:
    """Get the schemas of an assistant by ID.

    Args:
        assistant_id: The ID of the assistant to get the schema of.

    Returns:
        GraphSchema: The graph schema for the assistant.

    Example Usage:

        schema = await client.assistants.get_schemas(
            assistant_id="my_assistant_id"
        )
        print(schema)

        ----------------------------------------------------------------------------------------------------------------------------

        {
            'graph_id': 'agent',
            'state_schema':
                {
                    'title': 'LangGraphInput',
                    '$ref': '#/definitions/AgentState',
                    'definitions':
                        {
                            'BaseMessage':
                                {
                                    'title': 'BaseMessage',
                                    'description': 'Base abstract Message class. Messages are the inputs and outputs of ChatModels.',
                                    'type': 'object',
                                    'properties':
                                        {
                                         'content':
                                            {
                                                'title': 'Content',
                                                'anyOf': [
                                                    {'type': 'string'},
                                                    {'type': 'array','items': {'anyOf': [{'type': 'string'}, {'type': 'object'}]}}
                                                ]
                                            },
                                        'additional_kwargs':
                                            {
                                                'title': 'Additional Kwargs',
                                                'type': 'object'
                                            },
                                        'response_metadata':
                                            {
                                                'title': 'Response Metadata',
                                                'type': 'object'
                                            },
                                        'type':
                                            {
                                                'title': 'Type',
                                                'type': 'string'
                                            },
                                        'name':
                                            {
                                                'title': 'Name',
                                                'type': 'string'
                                            },
                                        'id':
                                            {
                                                'title': 'Id',
                                                'type': 'string'
                                            }
                                        },
                                    'required': ['content', 'type']
                                },
                            'AgentState':
                                {
                                    'title': 'AgentState',
                                    'type': 'object',
                                    'properties':
                                        {
                                            'messages':
                                                {
                                                    'title': 'Messages',
                                                    'type': 'array',
                                                    'items': {'$ref': '#/definitions/BaseMessage'}
                                                }
                                        },
                                    'required': ['messages']
                                }
                        }
                },
            'config_schema':
                {
                    'title': 'Configurable',
                    'type': 'object',
                    'properties':
                        {
                            'model_name':
                                {
                                    'title': 'Model Name',
                                    'enum': ['anthropic', 'openai'],
                                    'type': 'string'
                                }
                        }
                }
        }

    """  # noqa: E501
    return await self.http.get(f"/assistants/{assistant_id}/schemas")

get_subgraphs(assistant_id: str, namespace: Optional[str] = None, recurse: bool = False) -> Subgraphs async

Get the schemas of an assistant by ID.

Parameters:

  • assistant_id (str) –

    The ID of the assistant to get the schema of.

Returns:

  • Subgraphs ( Subgraphs ) –

    The graph schema for the assistant.

Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_subgraphs(
    self, assistant_id: str, namespace: Optional[str] = None, recurse: bool = False
) -> Subgraphs:
    """Get the schemas of an assistant by ID.

    Args:
        assistant_id: The ID of the assistant to get the schema of.

    Returns:
        Subgraphs: The graph schema for the assistant.

    """  # noqa: E501
    if namespace is not None:
        return await self.http.get(
            f"/assistants/{assistant_id}/subgraphs/{namespace}",
            params={"recurse": recurse},
        )
    else:
        return await self.http.get(
            f"/assistants/{assistant_id}/subgraphs",
            params={"recurse": recurse},
        )

create(graph_id: Optional[str], config: Optional[Config] = None, *, metadata: Json = None, assistant_id: Optional[str] = None, if_exists: Optional[OnConflictBehavior] = None, name: Optional[str] = None) -> Assistant async

Create a new assistant.

Useful when graph is configurable and you want to create different assistants based on different configurations.

Parameters:

  • graph_id (Optional[str]) –

    The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration.

  • config (Optional[Config], default: None ) –

    Configuration to use for the graph.

  • metadata (Json, default: None ) –

    Metadata to add to assistant.

  • assistant_id (Optional[str], default: None ) –

    Assistant ID to use, will default to a random UUID if not provided.

  • if_exists (Optional[OnConflictBehavior], default: None ) –

    How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing assistant).

  • name (Optional[str], default: None ) –

    The name of the assistant. Defaults to 'Untitled' under the hood.

Returns:

  • Assistant ( Assistant ) –

    The created assistant.

Example Usage:

assistant = await client.assistants.create(
    graph_id="agent",
    config={"configurable": {"model_name": "openai"}},
    metadata={"number":1},
    assistant_id="my-assistant-id",
    if_exists="do_nothing",
    name="my_name"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def create(
    self,
    graph_id: Optional[str],
    config: Optional[Config] = None,
    *,
    metadata: Json = None,
    assistant_id: Optional[str] = None,
    if_exists: Optional[OnConflictBehavior] = None,
    name: Optional[str] = None,
) -> Assistant:
    """Create a new assistant.

    Useful when graph is configurable and you want to create different assistants based on different configurations.

    Args:
        graph_id: The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration.
        config: Configuration to use for the graph.
        metadata: Metadata to add to assistant.
        assistant_id: Assistant ID to use, will default to a random UUID if not provided.
        if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood.
            Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing assistant).
        name: The name of the assistant. Defaults to 'Untitled' under the hood.

    Returns:
        Assistant: The created assistant.

    Example Usage:

        assistant = await client.assistants.create(
            graph_id="agent",
            config={"configurable": {"model_name": "openai"}},
            metadata={"number":1},
            assistant_id="my-assistant-id",
            if_exists="do_nothing",
            name="my_name"
        )
    """  # noqa: E501
    payload: Dict[str, Any] = {
        "graph_id": graph_id,
    }
    if config:
        payload["config"] = config
    if metadata:
        payload["metadata"] = metadata
    if assistant_id:
        payload["assistant_id"] = assistant_id
    if if_exists:
        payload["if_exists"] = if_exists
    if name:
        payload["name"] = name
    return await self.http.post("/assistants", json=payload)

update(assistant_id: str, *, graph_id: Optional[str] = None, config: Optional[Config] = None, metadata: Json = None, name: Optional[str] = None) -> Assistant async

Update an assistant.

Use this to point to a different graph, update the configuration, or change the metadata of an assistant.

Parameters:

  • assistant_id (str) –

    Assistant to update.

  • graph_id (Optional[str], default: None ) –

    The ID of the graph the assistant should use. The graph ID is normally set in your langgraph.json configuration. If None, assistant will keep pointing to same graph.

  • config (Optional[Config], default: None ) –

    Configuration to use for the graph.

  • metadata (Json, default: None ) –

    Metadata to merge with existing assistant metadata.

  • name (Optional[str], default: None ) –

    The new name for the assistant.

Returns:

  • Assistant ( Assistant ) –

    The updated assistant.

Example Usage:

assistant = await client.assistants.update(
    assistant_id='e280dad7-8618-443f-87f1-8e41841c180f',
    graph_id="other-graph",
    config={"configurable": {"model_name": "anthropic"}},
    metadata={"number":2}
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def update(
    self,
    assistant_id: str,
    *,
    graph_id: Optional[str] = None,
    config: Optional[Config] = None,
    metadata: Json = None,
    name: Optional[str] = None,
) -> Assistant:
    """Update an assistant.

    Use this to point to a different graph, update the configuration, or change the metadata of an assistant.

    Args:
        assistant_id: Assistant to update.
        graph_id: The ID of the graph the assistant should use.
            The graph ID is normally set in your langgraph.json configuration. If None, assistant will keep pointing to same graph.
        config: Configuration to use for the graph.
        metadata: Metadata to merge with existing assistant metadata.
        name: The new name for the assistant.

    Returns:
        Assistant: The updated assistant.

    Example Usage:

        assistant = await client.assistants.update(
            assistant_id='e280dad7-8618-443f-87f1-8e41841c180f',
            graph_id="other-graph",
            config={"configurable": {"model_name": "anthropic"}},
            metadata={"number":2}
        )

    """  # noqa: E501
    payload: Dict[str, Any] = {}
    if graph_id:
        payload["graph_id"] = graph_id
    if config:
        payload["config"] = config
    if metadata:
        payload["metadata"] = metadata
    if name:
        payload["name"] = name
    return await self.http.patch(
        f"/assistants/{assistant_id}",
        json=payload,
    )

delete(assistant_id: str) -> None async

Delete an assistant.

Parameters:

  • assistant_id (str) –

    The assistant ID to delete.

Returns:

  • None

    None

Example Usage:

await client.assistants.delete(
    assistant_id="my_assistant_id"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def delete(
    self,
    assistant_id: str,
) -> None:
    """Delete an assistant.

    Args:
        assistant_id: The assistant ID to delete.

    Returns:
        None

    Example Usage:

        await client.assistants.delete(
            assistant_id="my_assistant_id"
        )

    """  # noqa: E501
    await self.http.delete(f"/assistants/{assistant_id}")

search(*, metadata: Json = None, graph_id: Optional[str] = None, limit: int = 10, offset: int = 0) -> list[Assistant] async

Search for assistants.

Parameters:

  • metadata (Json, default: None ) –

    Metadata to filter by. Exact match filter for each KV pair.

  • graph_id (Optional[str], default: None ) –

    The ID of the graph to filter by. The graph ID is normally set in your langgraph.json configuration.

  • limit (int, default: 10 ) –

    The maximum number of results to return.

  • offset (int, default: 0 ) –

    The number of results to skip.

Returns:

  • list[Assistant]

    list[Assistant]: A list of assistants.

Example Usage:

assistants = await client.assistants.search(
    metadata = {"name":"my_name"},
    graph_id="my_graph_id",
    limit=5,
    offset=5
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def search(
    self,
    *,
    metadata: Json = None,
    graph_id: Optional[str] = None,
    limit: int = 10,
    offset: int = 0,
) -> list[Assistant]:
    """Search for assistants.

    Args:
        metadata: Metadata to filter by. Exact match filter for each KV pair.
        graph_id: The ID of the graph to filter by.
            The graph ID is normally set in your langgraph.json configuration.
        limit: The maximum number of results to return.
        offset: The number of results to skip.

    Returns:
        list[Assistant]: A list of assistants.

    Example Usage:

        assistants = await client.assistants.search(
            metadata = {"name":"my_name"},
            graph_id="my_graph_id",
            limit=5,
            offset=5
        )
    """
    payload: Dict[str, Any] = {
        "limit": limit,
        "offset": offset,
    }
    if metadata:
        payload["metadata"] = metadata
    if graph_id:
        payload["graph_id"] = graph_id
    return await self.http.post(
        "/assistants/search",
        json=payload,
    )

get_versions(assistant_id: str, metadata: Json = None, limit: int = 10, offset: int = 0) -> list[AssistantVersion] async

List all versions of an assistant.

Parameters:

  • assistant_id (str) –

    The assistant ID to get versions for.

  • metadata (Json, default: None ) –

    Metadata to filter versions by. Exact match filter for each KV pair.

  • limit (int, default: 10 ) –

    The maximum number of versions to return.

  • offset (int, default: 0 ) –

    The number of versions to skip.

Returns:

  • list[AssistantVersion]

    list[Assistant]: A list of assistants.

Example Usage:

assistant_versions = await client.assistants.get_versions(
    assistant_id="my_assistant_id"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_versions(
    self,
    assistant_id: str,
    metadata: Json = None,
    limit: int = 10,
    offset: int = 0,
) -> list[AssistantVersion]:
    """List all versions of an assistant.

    Args:
        assistant_id: The assistant ID to get versions for.
        metadata: Metadata to filter versions by. Exact match filter for each KV pair.
        limit: The maximum number of versions to return.
        offset: The number of versions to skip.

    Returns:
        list[Assistant]: A list of assistants.

    Example Usage:

        assistant_versions = await client.assistants.get_versions(
            assistant_id="my_assistant_id"
        )

    """  # noqa: E501

    payload: Dict[str, Any] = {
        "limit": limit,
        "offset": offset,
    }
    if metadata:
        payload["metadata"] = metadata
    return await self.http.post(
        f"/assistants/{assistant_id}/versions", json=payload
    )

set_latest(assistant_id: str, version: int) -> Assistant async

Change the version of an assistant.

Parameters:

  • assistant_id (str) –

    The assistant ID to delete.

  • version (int) –

    The version to change to.

Returns:

  • Assistant ( Assistant ) –

    Assistant Object.

Example Usage:

new_version_assistant = await client.assistants.set_latest(
    assistant_id="my_assistant_id",
    version=3
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def set_latest(self, assistant_id: str, version: int) -> Assistant:
    """Change the version of an assistant.

    Args:
        assistant_id: The assistant ID to delete.
        version: The version to change to.

    Returns:
        Assistant: Assistant Object.

    Example Usage:

        new_version_assistant = await client.assistants.set_latest(
            assistant_id="my_assistant_id",
            version=3
        )

    """  # noqa: E501

    payload: Dict[str, Any] = {"version": version}

    return await self.http.post(f"/assistants/{assistant_id}/latest", json=payload)

ThreadsClient

Client for managing threads in LangGraph.

A thread maintains the state of a graph across multiple interactions/invocations (aka runs). It accumulates and persists the graph's state, allowing for continuity between separate invocations of the graph.

Example:

client = get_client()
new_thread = await client.threads.create(metadata={"user_id": "123"})
Source code in libs/sdk-py/langgraph_sdk/client.py
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
class ThreadsClient:
    """Client for managing threads in LangGraph.

    A thread maintains the state of a graph across multiple interactions/invocations (aka runs).
    It accumulates and persists the graph's state, allowing for continuity between separate
    invocations of the graph.

    Example:

        client = get_client()
        new_thread = await client.threads.create(metadata={"user_id": "123"})
    """

    def __init__(self, http: HttpClient) -> None:
        self.http = http

    async def get(self, thread_id: str) -> Thread:
        """Get a thread by ID.

        Args:
            thread_id: The ID of the thread to get.

        Returns:
            Thread: Thread object.

        Example Usage:

            thread = await client.threads.get(
                thread_id="my_thread_id"
            )
            print(thread)

            -----------------------------------------------------

            {
                'thread_id': 'my_thread_id',
                'created_at': '2024-07-18T18:35:15.540834+00:00',
                'updated_at': '2024-07-18T18:35:15.540834+00:00',
                'metadata': {'graph_id': 'agent'}
            }

        """  # noqa: E501

        return await self.http.get(f"/threads/{thread_id}")

    async def create(
        self,
        *,
        metadata: Json = None,
        thread_id: Optional[str] = None,
        if_exists: Optional[OnConflictBehavior] = None,
    ) -> Thread:
        """Create a new thread.

        Args:
            metadata: Metadata to add to thread.
            thread_id: ID of thread.
                If None, ID will be a randomly generated UUID.
            if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood.
                Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing thread).

        Returns:
            Thread: The created thread.

        Example Usage:

            thread = await client.threads.create(
                metadata={"number":1},
                thread_id="my-thread-id",
                if_exists="raise"
            )
        """  # noqa: E501
        payload: Dict[str, Any] = {}
        if thread_id:
            payload["thread_id"] = thread_id
        if metadata:
            payload["metadata"] = metadata
        if if_exists:
            payload["if_exists"] = if_exists
        return await self.http.post("/threads", json=payload)

    async def update(self, thread_id: str, *, metadata: dict[str, Any]) -> Thread:
        """Update a thread.

        Args:
            thread_id: ID of thread to update.
            metadata: Metadata to merge with existing thread metadata.

        Returns:
            Thread: The created thread.

        Example Usage:

            thread = await client.threads.update(
                thread_id="my-thread-id",
                metadata={"number":1},
            )
        """  # noqa: E501
        return await self.http.patch(
            f"/threads/{thread_id}", json={"metadata": metadata}
        )

    async def delete(self, thread_id: str) -> None:
        """Delete a thread.

        Args:
            thread_id: The ID of the thread to delete.

        Returns:
            None

        Example Usage:

            await client.threads.delete(
                thread_id="my_thread_id"
            )

        """  # noqa: E501
        await self.http.delete(f"/threads/{thread_id}")

    async def search(
        self,
        *,
        metadata: Json = None,
        values: Json = None,
        status: Optional[ThreadStatus] = None,
        limit: int = 10,
        offset: int = 0,
    ) -> list[Thread]:
        """Search for threads.

        Args:
            metadata: Thread metadata to filter on.
            values: State values to filter on.
            status: Thread status to filter on.
                Must be one of 'idle', 'busy', 'interrupted' or 'error'.
            limit: Limit on number of threads to return.
            offset: Offset in threads table to start search from.

        Returns:
            list[Thread]: List of the threads matching the search parameters.

        Example Usage:

            threads = await client.threads.search(
                metadata={"number":1},
                status="interrupted",
                limit=15,
                offset=5
            )

        """  # noqa: E501
        payload: Dict[str, Any] = {
            "limit": limit,
            "offset": offset,
        }
        if metadata:
            payload["metadata"] = metadata
        if values:
            payload["values"] = values
        if status:
            payload["status"] = status
        return await self.http.post(
            "/threads/search",
            json=payload,
        )

    async def copy(self, thread_id: str) -> None:
        """Copy a thread.

        Args:
            thread_id: The ID of the thread to copy.

        Returns:
            None

        Example Usage:

            await client.threads.copy(
                thread_id="my_thread_id"
            )

        """  # noqa: E501
        return await self.http.post(f"/threads/{thread_id}/copy", json=None)

    async def get_state(
        self,
        thread_id: str,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,  # deprecated
        *,
        subgraphs: bool = False,
    ) -> ThreadState:
        """Get the state of a thread.

        Args:
            thread_id: The ID of the thread to get the state of.
            checkpoint: The checkpoint to get the state of.
            subgraphs: Include subgraphs states.

        Returns:
            ThreadState: the thread of the state.

        Example Usage:

            thread_state = await client.threads.get_state(
                thread_id="my_thread_id",
                checkpoint_id="my_checkpoint_id"
            )
            print(thread_state)

            ----------------------------------------------------------------------------------------------------------------------------------------------------------------------

            {
                'values': {
                    'messages': [
                        {
                            'content': 'how are you?',
                            'additional_kwargs': {},
                            'response_metadata': {},
                            'type': 'human',
                            'name': None,
                            'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10',
                            'example': False
                        },
                        {
                            'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                            'additional_kwargs': {},
                            'response_metadata': {},
                            'type': 'ai',
                            'name': None,
                            'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                            'example': False,
                            'tool_calls': [],
                            'invalid_tool_calls': [],
                            'usage_metadata': None
                        }
                    ]
                },
                'next': [],
                'checkpoint':
                    {
                        'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                        'checkpoint_ns': '',
                        'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1'
                    }
                'metadata':
                    {
                        'step': 1,
                        'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2',
                        'source': 'loop',
                        'writes':
                            {
                                'agent':
                                    {
                                        'messages': [
                                            {
                                                'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                                                'name': None,
                                                'type': 'ai',
                                                'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                                                'example': False,
                                                'tool_calls': [],
                                                'usage_metadata': None,
                                                'additional_kwargs': {},
                                                'response_metadata': {},
                                                'invalid_tool_calls': []
                                            }
                                        ]
                                    }
                            },
                'user_id': None,
                'graph_id': 'agent',
                'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                'created_by': 'system',
                'assistant_id': 'fe096781-5601-53d2-b2f6-0d3403f7e9ca'},
                'created_at': '2024-07-25T15:35:44.184703+00:00',
                'parent_config':
                    {
                        'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                        'checkpoint_ns': '',
                        'checkpoint_id': '1ef4a9b8-d80d-6fa7-8000-9300467fad0f'
                    }
            }

        """  # noqa: E501
        if checkpoint:
            return await self.http.post(
                f"/threads/{thread_id}/state/checkpoint",
                json={"checkpoint": checkpoint, "subgraphs": subgraphs},
            )
        elif checkpoint_id:
            return await self.http.get(
                f"/threads/{thread_id}/state/{checkpoint_id}",
                params={"subgraphs": subgraphs},
            )
        else:
            return await self.http.get(
                f"/threads/{thread_id}/state",
                params={"subgraphs": subgraphs},
            )

    async def update_state(
        self,
        thread_id: str,
        values: Optional[Union[dict, Sequence[dict]]],
        *,
        as_node: Optional[str] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,  # deprecated
    ) -> ThreadUpdateStateResponse:
        """Update the state of a thread.

        Args:
            thread_id: The ID of the thread to update.
            values: The values to update the state with.
            as_node: Update the state as if this node had just executed.
            checkpoint: The checkpoint to update the state of.

        Returns:
            ThreadUpdateStateResponse: Response after updating a thread's state.

        Example Usage:

            response = await client.threads.update_state(
                thread_id="my_thread_id",
                values={"messages":[{"role": "user", "content": "hello!"}]},
                as_node="my_node",
            )
            print(response)

            ----------------------------------------------------------------------------------------------------------------------------------------------------------------------

            {
                'checkpoint': {
                    'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                    'checkpoint_ns': '',
                    'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1',
                    'checkpoint_map': {}
                }
            }

        """  # noqa: E501
        payload: Dict[str, Any] = {
            "values": values,
        }
        if checkpoint_id:
            payload["checkpoint_id"] = checkpoint_id
        if checkpoint:
            payload["checkpoint"] = checkpoint
        if as_node:
            payload["as_node"] = as_node
        return await self.http.post(f"/threads/{thread_id}/state", json=payload)

    async def get_history(
        self,
        thread_id: str,
        *,
        limit: int = 10,
        before: Optional[str | Checkpoint] = None,
        metadata: Optional[dict] = None,
        checkpoint: Optional[Checkpoint] = None,
    ) -> list[ThreadState]:
        """Get the state history of a thread.

        Args:
            thread_id: The ID of the thread to get the state history for.
            checkpoint: Return states for this subgraph. If empty defaults to root.
            limit: The maximum number of states to return.
            before: Return states before this checkpoint.
            metadata: Filter states by metadata key-value pairs.

        Returns:
            list[ThreadState]: the state history of the thread.

        Example Usage:

            thread_state = await client.threads.get_history(
                thread_id="my_thread_id",
                limit=5,
            )

        """  # noqa: E501
        payload: Dict[str, Any] = {
            "limit": limit,
        }
        if before:
            payload["before"] = before
        if metadata:
            payload["metadata"] = metadata
        if checkpoint:
            payload["checkpoint"] = checkpoint
        return await self.http.post(f"/threads/{thread_id}/history", json=payload)

get(thread_id: str) -> Thread async

Get a thread by ID.

Parameters:

  • thread_id (str) –

    The ID of the thread to get.

Returns:

  • Thread ( Thread ) –

    Thread object.

Example Usage:

thread = await client.threads.get(
    thread_id="my_thread_id"
)
print(thread)

-----------------------------------------------------

{
    'thread_id': 'my_thread_id',
    'created_at': '2024-07-18T18:35:15.540834+00:00',
    'updated_at': '2024-07-18T18:35:15.540834+00:00',
    'metadata': {'graph_id': 'agent'}
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get(self, thread_id: str) -> Thread:
    """Get a thread by ID.

    Args:
        thread_id: The ID of the thread to get.

    Returns:
        Thread: Thread object.

    Example Usage:

        thread = await client.threads.get(
            thread_id="my_thread_id"
        )
        print(thread)

        -----------------------------------------------------

        {
            'thread_id': 'my_thread_id',
            'created_at': '2024-07-18T18:35:15.540834+00:00',
            'updated_at': '2024-07-18T18:35:15.540834+00:00',
            'metadata': {'graph_id': 'agent'}
        }

    """  # noqa: E501

    return await self.http.get(f"/threads/{thread_id}")

create(*, metadata: Json = None, thread_id: Optional[str] = None, if_exists: Optional[OnConflictBehavior] = None) -> Thread async

Create a new thread.

Parameters:

  • metadata (Json, default: None ) –

    Metadata to add to thread.

  • thread_id (Optional[str], default: None ) –

    ID of thread. If None, ID will be a randomly generated UUID.

  • if_exists (Optional[OnConflictBehavior], default: None ) –

    How to handle duplicate creation. Defaults to 'raise' under the hood. Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing thread).

Returns:

  • Thread ( Thread ) –

    The created thread.

Example Usage:

thread = await client.threads.create(
    metadata={"number":1},
    thread_id="my-thread-id",
    if_exists="raise"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def create(
    self,
    *,
    metadata: Json = None,
    thread_id: Optional[str] = None,
    if_exists: Optional[OnConflictBehavior] = None,
) -> Thread:
    """Create a new thread.

    Args:
        metadata: Metadata to add to thread.
        thread_id: ID of thread.
            If None, ID will be a randomly generated UUID.
        if_exists: How to handle duplicate creation. Defaults to 'raise' under the hood.
            Must be either 'raise' (raise error if duplicate), or 'do_nothing' (return existing thread).

    Returns:
        Thread: The created thread.

    Example Usage:

        thread = await client.threads.create(
            metadata={"number":1},
            thread_id="my-thread-id",
            if_exists="raise"
        )
    """  # noqa: E501
    payload: Dict[str, Any] = {}
    if thread_id:
        payload["thread_id"] = thread_id
    if metadata:
        payload["metadata"] = metadata
    if if_exists:
        payload["if_exists"] = if_exists
    return await self.http.post("/threads", json=payload)

update(thread_id: str, *, metadata: dict[str, Any]) -> Thread async

Update a thread.

Parameters:

  • thread_id (str) –

    ID of thread to update.

  • metadata (dict[str, Any]) –

    Metadata to merge with existing thread metadata.

Returns:

  • Thread ( Thread ) –

    The created thread.

Example Usage:

thread = await client.threads.update(
    thread_id="my-thread-id",
    metadata={"number":1},
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def update(self, thread_id: str, *, metadata: dict[str, Any]) -> Thread:
    """Update a thread.

    Args:
        thread_id: ID of thread to update.
        metadata: Metadata to merge with existing thread metadata.

    Returns:
        Thread: The created thread.

    Example Usage:

        thread = await client.threads.update(
            thread_id="my-thread-id",
            metadata={"number":1},
        )
    """  # noqa: E501
    return await self.http.patch(
        f"/threads/{thread_id}", json={"metadata": metadata}
    )

delete(thread_id: str) -> None async

Delete a thread.

Parameters:

  • thread_id (str) –

    The ID of the thread to delete.

Returns:

  • None

    None

Example Usage:

await client.threads.delete(
    thread_id="my_thread_id"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def delete(self, thread_id: str) -> None:
    """Delete a thread.

    Args:
        thread_id: The ID of the thread to delete.

    Returns:
        None

    Example Usage:

        await client.threads.delete(
            thread_id="my_thread_id"
        )

    """  # noqa: E501
    await self.http.delete(f"/threads/{thread_id}")

search(*, metadata: Json = None, values: Json = None, status: Optional[ThreadStatus] = None, limit: int = 10, offset: int = 0) -> list[Thread] async

Search for threads.

Parameters:

  • metadata (Json, default: None ) –

    Thread metadata to filter on.

  • values (Json, default: None ) –

    State values to filter on.

  • status (Optional[ThreadStatus], default: None ) –

    Thread status to filter on. Must be one of 'idle', 'busy', 'interrupted' or 'error'.

  • limit (int, default: 10 ) –

    Limit on number of threads to return.

  • offset (int, default: 0 ) –

    Offset in threads table to start search from.

Returns:

  • list[Thread]

    list[Thread]: List of the threads matching the search parameters.

Example Usage:

threads = await client.threads.search(
    metadata={"number":1},
    status="interrupted",
    limit=15,
    offset=5
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def search(
    self,
    *,
    metadata: Json = None,
    values: Json = None,
    status: Optional[ThreadStatus] = None,
    limit: int = 10,
    offset: int = 0,
) -> list[Thread]:
    """Search for threads.

    Args:
        metadata: Thread metadata to filter on.
        values: State values to filter on.
        status: Thread status to filter on.
            Must be one of 'idle', 'busy', 'interrupted' or 'error'.
        limit: Limit on number of threads to return.
        offset: Offset in threads table to start search from.

    Returns:
        list[Thread]: List of the threads matching the search parameters.

    Example Usage:

        threads = await client.threads.search(
            metadata={"number":1},
            status="interrupted",
            limit=15,
            offset=5
        )

    """  # noqa: E501
    payload: Dict[str, Any] = {
        "limit": limit,
        "offset": offset,
    }
    if metadata:
        payload["metadata"] = metadata
    if values:
        payload["values"] = values
    if status:
        payload["status"] = status
    return await self.http.post(
        "/threads/search",
        json=payload,
    )

copy(thread_id: str) -> None async

Copy a thread.

Parameters:

  • thread_id (str) –

    The ID of the thread to copy.

Returns:

  • None

    None

Example Usage:

await client.threads.copy(
    thread_id="my_thread_id"
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def copy(self, thread_id: str) -> None:
    """Copy a thread.

    Args:
        thread_id: The ID of the thread to copy.

    Returns:
        None

    Example Usage:

        await client.threads.copy(
            thread_id="my_thread_id"
        )

    """  # noqa: E501
    return await self.http.post(f"/threads/{thread_id}/copy", json=None)

get_state(thread_id: str, checkpoint: Optional[Checkpoint] = None, checkpoint_id: Optional[str] = None, *, subgraphs: bool = False) -> ThreadState async

Get the state of a thread.

Parameters:

  • thread_id (str) –

    The ID of the thread to get the state of.

  • checkpoint (Optional[Checkpoint], default: None ) –

    The checkpoint to get the state of.

  • subgraphs (bool, default: False ) –

    Include subgraphs states.

Returns:

  • ThreadState ( ThreadState ) –

    the thread of the state.

Example Usage:

thread_state = await client.threads.get_state(
    thread_id="my_thread_id",
    checkpoint_id="my_checkpoint_id"
)
print(thread_state)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

{
    'values': {
        'messages': [
            {
                'content': 'how are you?',
                'additional_kwargs': {},
                'response_metadata': {},
                'type': 'human',
                'name': None,
                'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10',
                'example': False
            },
            {
                'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                'additional_kwargs': {},
                'response_metadata': {},
                'type': 'ai',
                'name': None,
                'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                'example': False,
                'tool_calls': [],
                'invalid_tool_calls': [],
                'usage_metadata': None
            }
        ]
    },
    'next': [],
    'checkpoint':
        {
            'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
            'checkpoint_ns': '',
            'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1'
        }
    'metadata':
        {
            'step': 1,
            'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2',
            'source': 'loop',
            'writes':
                {
                    'agent':
                        {
                            'messages': [
                                {
                                    'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                                    'name': None,
                                    'type': 'ai',
                                    'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                                    'example': False,
                                    'tool_calls': [],
                                    'usage_metadata': None,
                                    'additional_kwargs': {},
                                    'response_metadata': {},
                                    'invalid_tool_calls': []
                                }
                            ]
                        }
                },
    'user_id': None,
    'graph_id': 'agent',
    'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
    'created_by': 'system',
    'assistant_id': 'fe096781-5601-53d2-b2f6-0d3403f7e9ca'},
    'created_at': '2024-07-25T15:35:44.184703+00:00',
    'parent_config':
        {
            'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
            'checkpoint_ns': '',
            'checkpoint_id': '1ef4a9b8-d80d-6fa7-8000-9300467fad0f'
        }
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_state(
    self,
    thread_id: str,
    checkpoint: Optional[Checkpoint] = None,
    checkpoint_id: Optional[str] = None,  # deprecated
    *,
    subgraphs: bool = False,
) -> ThreadState:
    """Get the state of a thread.

    Args:
        thread_id: The ID of the thread to get the state of.
        checkpoint: The checkpoint to get the state of.
        subgraphs: Include subgraphs states.

    Returns:
        ThreadState: the thread of the state.

    Example Usage:

        thread_state = await client.threads.get_state(
            thread_id="my_thread_id",
            checkpoint_id="my_checkpoint_id"
        )
        print(thread_state)

        ----------------------------------------------------------------------------------------------------------------------------------------------------------------------

        {
            'values': {
                'messages': [
                    {
                        'content': 'how are you?',
                        'additional_kwargs': {},
                        'response_metadata': {},
                        'type': 'human',
                        'name': None,
                        'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10',
                        'example': False
                    },
                    {
                        'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                        'additional_kwargs': {},
                        'response_metadata': {},
                        'type': 'ai',
                        'name': None,
                        'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                        'example': False,
                        'tool_calls': [],
                        'invalid_tool_calls': [],
                        'usage_metadata': None
                    }
                ]
            },
            'next': [],
            'checkpoint':
                {
                    'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                    'checkpoint_ns': '',
                    'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1'
                }
            'metadata':
                {
                    'step': 1,
                    'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2',
                    'source': 'loop',
                    'writes':
                        {
                            'agent':
                                {
                                    'messages': [
                                        {
                                            'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b',
                                            'name': None,
                                            'type': 'ai',
                                            'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                                            'example': False,
                                            'tool_calls': [],
                                            'usage_metadata': None,
                                            'additional_kwargs': {},
                                            'response_metadata': {},
                                            'invalid_tool_calls': []
                                        }
                                    ]
                                }
                        },
            'user_id': None,
            'graph_id': 'agent',
            'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
            'created_by': 'system',
            'assistant_id': 'fe096781-5601-53d2-b2f6-0d3403f7e9ca'},
            'created_at': '2024-07-25T15:35:44.184703+00:00',
            'parent_config':
                {
                    'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                    'checkpoint_ns': '',
                    'checkpoint_id': '1ef4a9b8-d80d-6fa7-8000-9300467fad0f'
                }
        }

    """  # noqa: E501
    if checkpoint:
        return await self.http.post(
            f"/threads/{thread_id}/state/checkpoint",
            json={"checkpoint": checkpoint, "subgraphs": subgraphs},
        )
    elif checkpoint_id:
        return await self.http.get(
            f"/threads/{thread_id}/state/{checkpoint_id}",
            params={"subgraphs": subgraphs},
        )
    else:
        return await self.http.get(
            f"/threads/{thread_id}/state",
            params={"subgraphs": subgraphs},
        )

update_state(thread_id: str, values: Optional[Union[dict, Sequence[dict]]], *, as_node: Optional[str] = None, checkpoint: Optional[Checkpoint] = None, checkpoint_id: Optional[str] = None) -> ThreadUpdateStateResponse async

Update the state of a thread.

Parameters:

  • thread_id (str) –

    The ID of the thread to update.

  • values (Optional[Union[dict, Sequence[dict]]]) –

    The values to update the state with.

  • as_node (Optional[str], default: None ) –

    Update the state as if this node had just executed.

  • checkpoint (Optional[Checkpoint], default: None ) –

    The checkpoint to update the state of.

Returns:

  • ThreadUpdateStateResponse ( ThreadUpdateStateResponse ) –

    Response after updating a thread's state.

Example Usage:

response = await client.threads.update_state(
    thread_id="my_thread_id",
    values={"messages":[{"role": "user", "content": "hello!"}]},
    as_node="my_node",
)
print(response)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

{
    'checkpoint': {
        'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
        'checkpoint_ns': '',
        'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1',
        'checkpoint_map': {}
    }
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def update_state(
    self,
    thread_id: str,
    values: Optional[Union[dict, Sequence[dict]]],
    *,
    as_node: Optional[str] = None,
    checkpoint: Optional[Checkpoint] = None,
    checkpoint_id: Optional[str] = None,  # deprecated
) -> ThreadUpdateStateResponse:
    """Update the state of a thread.

    Args:
        thread_id: The ID of the thread to update.
        values: The values to update the state with.
        as_node: Update the state as if this node had just executed.
        checkpoint: The checkpoint to update the state of.

    Returns:
        ThreadUpdateStateResponse: Response after updating a thread's state.

    Example Usage:

        response = await client.threads.update_state(
            thread_id="my_thread_id",
            values={"messages":[{"role": "user", "content": "hello!"}]},
            as_node="my_node",
        )
        print(response)

        ----------------------------------------------------------------------------------------------------------------------------------------------------------------------

        {
            'checkpoint': {
                'thread_id': 'e2496803-ecd5-4e0c-a779-3226296181c2',
                'checkpoint_ns': '',
                'checkpoint_id': '1ef4a9b8-e6fb-67b1-8001-abd5184439d1',
                'checkpoint_map': {}
            }
        }

    """  # noqa: E501
    payload: Dict[str, Any] = {
        "values": values,
    }
    if checkpoint_id:
        payload["checkpoint_id"] = checkpoint_id
    if checkpoint:
        payload["checkpoint"] = checkpoint
    if as_node:
        payload["as_node"] = as_node
    return await self.http.post(f"/threads/{thread_id}/state", json=payload)

get_history(thread_id: str, *, limit: int = 10, before: Optional[str | Checkpoint] = None, metadata: Optional[dict] = None, checkpoint: Optional[Checkpoint] = None) -> list[ThreadState] async

Get the state history of a thread.

Parameters:

  • thread_id (str) –

    The ID of the thread to get the state history for.

  • checkpoint (Optional[Checkpoint], default: None ) –

    Return states for this subgraph. If empty defaults to root.

  • limit (int, default: 10 ) –

    The maximum number of states to return.

  • before (Optional[str | Checkpoint], default: None ) –

    Return states before this checkpoint.

  • metadata (Optional[dict], default: None ) –

    Filter states by metadata key-value pairs.

Returns:

  • list[ThreadState]

    list[ThreadState]: the state history of the thread.

Example Usage:

thread_state = await client.threads.get_history(
    thread_id="my_thread_id",
    limit=5,
)
Source code in libs/sdk-py/langgraph_sdk/client.py
async def get_history(
    self,
    thread_id: str,
    *,
    limit: int = 10,
    before: Optional[str | Checkpoint] = None,
    metadata: Optional[dict] = None,
    checkpoint: Optional[Checkpoint] = None,
) -> list[ThreadState]:
    """Get the state history of a thread.

    Args:
        thread_id: The ID of the thread to get the state history for.
        checkpoint: Return states for this subgraph. If empty defaults to root.
        limit: The maximum number of states to return.
        before: Return states before this checkpoint.
        metadata: Filter states by metadata key-value pairs.

    Returns:
        list[ThreadState]: the state history of the thread.

    Example Usage:

        thread_state = await client.threads.get_history(
            thread_id="my_thread_id",
            limit=5,
        )

    """  # noqa: E501
    payload: Dict[str, Any] = {
        "limit": limit,
    }
    if before:
        payload["before"] = before
    if metadata:
        payload["metadata"] = metadata
    if checkpoint:
        payload["checkpoint"] = checkpoint
    return await self.http.post(f"/threads/{thread_id}/history", json=payload)

RunsClient

Client for managing runs in LangGraph.

A run is a single assistant invocation with optional input, config, and metadata. This client manages runs, which can be stateful (on threads) or stateless.

Example:

client = get_client()
run = await client.runs.create(assistant_id="asst_123", thread_id="thread_456", input={"query": "Hello"})
Source code in libs/sdk-py/langgraph_sdk/client.py
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
class RunsClient:
    """Client for managing runs in LangGraph.

    A run is a single assistant invocation with optional input, config, and metadata.
    This client manages runs, which can be stateful (on threads) or stateless.

    Example:

        client = get_client()
        run = await client.runs.create(assistant_id="asst_123", thread_id="thread_456", input={"query": "Hello"})
    """

    def __init__(self, http: HttpClient) -> None:
        self.http = http

    @overload
    def stream(
        self,
        thread_id: str,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        feedback_keys: Optional[Sequence[str]] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        webhook: Optional[str] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
    ) -> AsyncIterator[StreamPart]: ...

    @overload
    def stream(
        self,
        thread_id: None,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        feedback_keys: Optional[Sequence[str]] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        if_not_exists: Optional[IfNotExists] = None,
        webhook: Optional[str] = None,
        after_seconds: Optional[int] = None,
    ) -> AsyncIterator[StreamPart]: ...

    def stream(
        self,
        thread_id: Optional[str],
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        feedback_keys: Optional[Sequence[str]] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        webhook: Optional[str] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
    ) -> AsyncIterator[StreamPart]:
        """Create a run and stream the results.

        Args:
            thread_id: the thread ID to assign to the thread.
                If None will create a stateless run.
            assistant_id: The assistant ID or graph name to stream from.
                If using graph name, will default to first assistant created from that graph.
            input: The input to the graph.
            command: A command to execute. Cannot be combined with input.
            stream_mode: The stream mode(s) to use.
            stream_subgraphs: Whether to stream output from subgraphs.
            metadata: Metadata to assign to the run.
            config: The configuration for the assistant.
            checkpoint: The checkpoint to resume from.
            interrupt_before: Nodes to interrupt immediately before they get executed.
            interrupt_after: Nodes to Nodes to interrupt immediately after they get executed.
            feedback_keys: Feedback keys to assign to run.
            on_disconnect: The disconnect mode to use.
                Must be one of 'cancel' or 'continue'.
            on_completion: Whether to delete or keep the thread created for a stateless run.
                Must be one of 'delete' or 'keep'.
            webhook: Webhook to call after LangGraph API call is done.
            multitask_strategy: Multitask strategy to use.
                Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.
            if_not_exists: How to handle missing thread. Defaults to 'reject'.
                Must be either 'reject' (raise error if missing), or 'create' (create new thread).
            after_seconds: The number of seconds to wait before starting the run.
                Use to schedule future runs.

        Returns:
            AsyncIterator[StreamPart]: Asynchronous iterator of stream results.

        Example Usage:

            async for chunk in client.runs.stream(
                thread_id=None,
                assistant_id="agent",
                input={"messages": [{"role": "user", "content": "how are you?"}]},
                stream_mode=["values","debug"],
                metadata={"name":"my_run"},
                config={"configurable": {"model_name": "anthropic"}},
                interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
                interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
                feedback_keys=["my_feedback_key_1","my_feedback_key_2"],
                webhook="https://my.fake.webhook.com",
                multitask_strategy="interrupt"
            ):
                print(chunk)

            ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

            StreamPart(event='metadata', data={'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2'})
            StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}]})
            StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}, {'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None}]})
            StreamPart(event='end', data=None)

        """  # noqa: E501
        payload = {
            "input": input,
            "command": command,
            "config": config,
            "metadata": metadata,
            "stream_mode": stream_mode,
            "stream_subgraphs": stream_subgraphs,
            "assistant_id": assistant_id,
            "interrupt_before": interrupt_before,
            "interrupt_after": interrupt_after,
            "feedback_keys": feedback_keys,
            "webhook": webhook,
            "checkpoint": checkpoint,
            "checkpoint_id": checkpoint_id,
            "multitask_strategy": multitask_strategy,
            "if_not_exists": if_not_exists,
            "on_disconnect": on_disconnect,
            "on_completion": on_completion,
            "after_seconds": after_seconds,
        }
        endpoint = (
            f"/threads/{thread_id}/runs/stream"
            if thread_id is not None
            else "/runs/stream"
        )
        return self.http.stream(
            endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}
        )

    @overload
    async def create(
        self,
        thread_id: None,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
    ) -> Run: ...

    @overload
    async def create(
        self,
        thread_id: str,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
    ) -> Run: ...

    async def create(
        self,
        thread_id: Optional[str],
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
        stream_subgraphs: bool = False,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        after_seconds: Optional[int] = None,
    ) -> Run:
        """Create a background run.

        Args:
            thread_id: the thread ID to assign to the thread.
                If None will create a stateless run.
            assistant_id: The assistant ID or graph name to stream from.
                If using graph name, will default to first assistant created from that graph.
            input: The input to the graph.
            command: A command to execute. Cannot be combined with input.
            stream_mode: The stream mode(s) to use.
            stream_subgraphs: Whether to stream output from subgraphs.
            metadata: Metadata to assign to the run.
            config: The configuration for the assistant.
            checkpoint: The checkpoint to resume from.
            interrupt_before: Nodes to interrupt immediately before they get executed.
            interrupt_after: Nodes to Nodes to interrupt immediately after they get executed.
            webhook: Webhook to call after LangGraph API call is done.
            multitask_strategy: Multitask strategy to use.
                Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.
            on_completion: Whether to delete or keep the thread created for a stateless run.
                Must be one of 'delete' or 'keep'.
            if_not_exists: How to handle missing thread. Defaults to 'reject'.
                Must be either 'reject' (raise error if missing), or 'create' (create new thread).
            after_seconds: The number of seconds to wait before starting the run.
                Use to schedule future runs.

        Returns:
            Run: The created background run.

        Example Usage:

            background_run = await client.runs.create(
                thread_id="my_thread_id",
                assistant_id="my_assistant_id",
                input={"messages": [{"role": "user", "content": "hello!"}]},
                metadata={"name":"my_run"},
                config={"configurable": {"model_name": "openai"}},
                interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
                interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
                webhook="https://my.fake.webhook.com",
                multitask_strategy="interrupt"
            )
            print(background_run)

            --------------------------------------------------------------------------------

            {
                'run_id': 'my_run_id',
                'thread_id': 'my_thread_id',
                'assistant_id': 'my_assistant_id',
                'created_at': '2024-07-25T15:35:42.598503+00:00',
                'updated_at': '2024-07-25T15:35:42.598503+00:00',
                'metadata': {},
                'status': 'pending',
                'kwargs':
                    {
                        'input':
                            {
                                'messages': [
                                    {
                                        'role': 'user',
                                        'content': 'how are you?'
                                    }
                                ]
                            },
                        'config':
                            {
                                'metadata':
                                    {
                                        'created_by': 'system'
                                    },
                                'configurable':
                                    {
                                        'run_id': 'my_run_id',
                                        'user_id': None,
                                        'graph_id': 'agent',
                                        'thread_id': 'my_thread_id',
                                        'checkpoint_id': None,
                                        'model_name': "openai",
                                        'assistant_id': 'my_assistant_id'
                                    }
                            },
                        'webhook': "https://my.fake.webhook.com",
                        'temporary': False,
                        'stream_mode': ['values'],
                        'feedback_keys': None,
                        'interrupt_after': ["node_to_stop_after_1","node_to_stop_after_2"],
                        'interrupt_before': ["node_to_stop_before_1","node_to_stop_before_2"]
                    },
                'multitask_strategy': 'interrupt'
            }

        """  # noqa: E501
        payload = {
            "input": input,
            "command": command,
            "stream_mode": stream_mode,
            "stream_subgraphs": stream_subgraphs,
            "config": config,
            "metadata": metadata,
            "assistant_id": assistant_id,
            "interrupt_before": interrupt_before,
            "interrupt_after": interrupt_after,
            "webhook": webhook,
            "checkpoint": checkpoint,
            "checkpoint_id": checkpoint_id,
            "multitask_strategy": multitask_strategy,
            "if_not_exists": if_not_exists,
            "on_completion": on_completion,
            "after_seconds": after_seconds,
        }
        payload = {k: v for k, v in payload.items() if v is not None}
        if thread_id:
            return await self.http.post(f"/threads/{thread_id}/runs", json=payload)
        else:
            return await self.http.post("/runs", json=payload)

    async def create_batch(self, payloads: list[RunCreate]) -> list[Run]:
        """Create a batch of stateless background runs."""

        def filter_payload(payload: RunCreate):
            return {k: v for k, v in payload.items() if v is not None}

        payloads = [filter_payload(payload) for payload in payloads]
        return await self.http.post("/runs/batch", json=payloads)

    @overload
    async def wait(
        self,
        thread_id: str,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
        raise_error: bool = True,
    ) -> Union[list[dict], dict[str, Any]]: ...

    @overload
    async def wait(
        self,
        thread_id: None,
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
        raise_error: bool = True,
    ) -> Union[list[dict], dict[str, Any]]: ...

    async def wait(
        self,
        thread_id: Optional[str],
        assistant_id: str,
        *,
        input: Optional[dict] = None,
        command: Optional[Command] = None,
        metadata: Optional[dict] = None,
        config: Optional[Config] = None,
        checkpoint: Optional[Checkpoint] = None,
        checkpoint_id: Optional[str] = None,
        interrupt_before: Optional[Union[All, Sequence[str]]] = None,
        interrupt_after: Optional[Union[All, Sequence[str]]] = None,
        webhook: Optional[str] = None,
        on_disconnect: Optional[DisconnectMode] = None,
        on_completion: Optional[OnCompletionBehavior] = None,
        multitask_strategy: Optional[MultitaskStrategy] = None,
        if_not_exists: Optional[IfNotExists] = None,
        after_seconds: Optional[int] = None,
        raise_error: bool = True,
    ) -> Union[list[dict], dict[str, Any]]:
        """Create a run, wait until it finishes and return the final state.

        Args:
            thread_id: the thread ID to create the run on.
                If None will create a stateless run.
            assistant_id: The assistant ID or graph name to run.
                If using graph name, will default to first assistant created from that graph.
            input: The input to the graph.
            command: A command to execute. Cannot be combined with input.
            metadata: Metadata to assign to the run.
            config: The configuration for the assistant.
            checkpoint: The checkpoint to resume from.
            interrupt_before: Nodes to interrupt immediately before they get executed.
            interrupt_after: Nodes to Nodes to interrupt immediately after they get executed.
            webhook: Webhook to call after LangGraph API call is done.
            on_disconnect: The disconnect mode to use.
                Must be one of 'cancel' or 'continue'.
            on_completion: Whether to delete or keep the thread created for a stateless run.
                Must be one of 'delete' or 'keep'.
            multitask_strategy: Multitask strategy to use.
                Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.
            if_not_exists: How to handle missing thread. Defaults to 'reject'.
                Must be either 'reject' (raise error if missing), or 'create' (create new thread).
            after_seconds: The number of seconds to wait before starting the run.
                Use to schedule future runs.

        Returns:
            Union[list[dict], dict[str, Any]]: The output of the run.

        Example Usage:

            final_state_of_run = await client.runs.wait(
                thread_id=None,
                assistant_id="agent",
                input={"messages": [{"role": "user", "content": "how are you?"}]},
                metadata={"name":"my_run"},
                config={"configurable": {"model_name": "anthropic"}},
                interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
                interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
                webhook="https://my.fake.webhook.com",
                multitask_strategy="interrupt"
            )
            print(final_state_of_run)

            -------------------------------------------------------------------------------------------------------------------------------------------

            {
                'messages': [
                    {
                        'content': 'how are you?',
                        'additional_kwargs': {},
                        'response_metadata': {},
                        'type': 'human',
                        'name': None,
                        'id': 'f51a862c-62fe-4866-863b-b0863e8ad78a',
                        'example': False
                    },
                    {
                        'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.",
                        'additional_kwargs': {},
                        'response_metadata': {},
                        'type': 'ai',
                        'name': None,
                        'id': 'run-bf1cd3c6-768f-4c16-b62d-ba6f17ad8b36',
                        'example': False,
                        'tool_calls': [],
                        'invalid_tool_calls': [],
                        'usage_metadata': None
                    }
                ]
            }

        """  # noqa: E501
        payload = {
            "input": input,
            "command": command,
            "config": config,
            "metadata": metadata,
            "assistant_id": assistant_id,
            "interrupt_before": interrupt_before,
            "interrupt_after": interrupt_after,
            "webhook": webhook,
            "checkpoint": checkpoint,
            "checkpoint_id": checkpoint_id,
            "multitask_strategy": multitask_strategy,
            "if_not_exists": if_not_exists,
            "on_disconnect": on_disconnect,
            "on_completion": on_completion,
            "after_seconds": after_seconds,
        }
        endpoint = (
            f"/threads/{thread_id}/runs/wait" if thread_id is not None else "/runs/wait"
        )
        response = await self.http.post(
            endpoint, json={k: v for k, v in payload.items() if v is not None}
        )
        if (
            raise_error
            and isinstance(response, dict)
            and "__error__" in response
            and isinstance(response["__error__"], dict)
        ):
            raise Exception(
                f"{response['__error__'].get('error')}: {response['__error__'].get('message')}"
            )
        return response

    async def list(
        self,
        thread_id: str,
        *,
        limit: int = 10,
        offset: int = 0,
        status: Optional[RunStatus] = None,
    ) -> List[Run]:
        """List runs.

        Args:
            thread_id: The thread ID to list runs for.
            limit: The maximum number of results to return.
            offset: The number of results to skip.
            status: The status of the run to filter by.

        Returns:
            List[Run]: The runs for the thread.

        Example Usage:

            await client.runs.delete(
                thread_id="thread_id_to_delete",
                limit=5,
                offset=5,
            )

        """  # noqa: E501
        params = {
            "limit": limit,
            "offset": offset,
        }
        if status is not None:
            params["status"] = status
        return await self.http.get(f"/threads/{thread_id}/runs", params=params)

    async def get(self, thread_id: str, run_id: str) -> Run:
        """Get a run.

        Args:
            thread_id: The thread ID to get.
            run_id: The run ID to get.

        Returns:
            Run: Run object.

        Example Usage:

            run = await client.runs.get(
                thread_id="thread_id_to_delete",
                run_id="run_id_to_delete",
            )

        """  # noqa: E501

        return await self.http.get(f"/threads/{thread_id}/runs/{run_id}")

    async def cancel(
        self,
        thread_id: str,
        run_id: str,
        *,
        wait: bool = False,
        action: CancelAction = "interrupt",
    ) -> None:
        """Get a run.

        Args:
            thread_id: The thread ID to cancel.
            run_id: The run ID to cancek.
            wait: Whether to wait until run has completed.
            action: Action to take when cancelling the run. Possible values
                are `interrupt` or `rollback`. Default is `interrupt`.

        Returns:
            None

        Example Usage:

            await client.runs.cancel(
                thread_id="thread_id_to_cancel",
                run_id="run_id_to_cancel",
                wait=True,
                action="interrupt"
            )

        """  # noqa: E501
        return await self.http.post(
            f"/threads/{thread_id}/runs/{run_id}/cancel?wait={1 if wait else 0}&action={action}",
            json=None,
        )

    async def join(self, thread_id: str, run_id: str) -> dict:
        """Block until a run is done. Returns the final state of the thread.

        Args:
            thread_id: The thread ID to join.
            run_id: The run ID to join.

        Returns:
            None

        Example Usage:

            result =await client.runs.join(
                thread_id="thread_id_to_join",
                run_id="run_id_to_join"
            )

        """  # noqa: E501
        return await self.http.get(f"/threads/{thread_id}/runs/{run_id}/join")

    def join_stream(
        self, thread_id: str, run_id: str, *, cancel_on_disconnect: bool = False
    ) -> AsyncIterator[StreamPart]:
        """Stream output from a run in real-time, until the run is done.
        Output is not buffered, so any output produced before this call will
        not be received here.

        Args:
            thread_id: The thread ID to join.
            run_id: The run ID to join.
            cancel_on_disconnect: Whether to cancel the run when the stream is disconnected.

        Returns:
            None

        Example Usage:

            await client.runs.join_stream(
                thread_id="thread_id_to_join",
                run_id="run_id_to_join"
            )

        """  # noqa: E501
        return self.http.stream(
            f"/threads/{thread_id}/runs/{run_id}/stream",
            "GET",
            params={"cancel_on_disconnect": cancel_on_disconnect},
        )

    async def delete(self, thread_id: str, run_id: str) -> None:
        """Delete a run.

        Args:
            thread_id: The thread ID to delete.
            run_id: The run ID to delete.

        Returns:
            None

        Example Usage:

            await client.runs.delete(
                thread_id="thread_id_to_delete",
                run_id="run_id_to_delete"
            )

        """  # noqa: E501
        await self.http.delete(f"/threads/{thread_id}/runs/{run_id}")

stream(thread_id: Optional[str], assistant_id: str, *, input: Optional[dict] = None, command: Optional[Command] = None, stream_mode: Union[StreamMode, Sequence[StreamMode]] = 'values', stream_subgraphs: bool = False, metadata: Optional[dict] = None, config: Optional[Config] = None, checkpoint: Optional[Checkpoint] = None, checkpoint_id: Optional[str] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, feedback_keys: Optional[Sequence[str]] = None, on_disconnect: Optional[DisconnectMode] = None, on_completion: Optional[OnCompletionBehavior] = None, webhook: Optional[str] = None, multitask_strategy: Optional[MultitaskStrategy] = None, if_not_exists: Optional[IfNotExists] = None, after_seconds: Optional[int] = None) -> AsyncIterator[StreamPart]

Create a run and stream the results.

Parameters:

  • thread_id (Optional[str]) –

    the thread ID to assign to the thread. If None will create a stateless run.

  • assistant_id (str) –

    The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph.

  • input (Optional[dict], default: None ) –

    The input to the graph.

  • command (Optional[Command], default: None ) –

    A command to execute. Cannot be combined with input.

  • stream_mode (Union[StreamMode, Sequence[StreamMode]], default: 'values' ) –

    The stream mode(s) to use.

  • stream_subgraphs (bool, default: False ) –

    Whether to stream output from subgraphs.

  • metadata (Optional[dict], default: None ) –

    Metadata to assign to the run.

  • config (Optional[Config], default: None ) –

    The configuration for the assistant.

  • checkpoint (Optional[Checkpoint], default: None ) –

    The checkpoint to resume from.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt immediately before they get executed.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to Nodes to interrupt immediately after they get executed.

  • feedback_keys (Optional[Sequence[str]], default: None ) –

    Feedback keys to assign to run.

  • on_disconnect (Optional[DisconnectMode], default: None ) –

    The disconnect mode to use. Must be one of 'cancel' or 'continue'.

  • on_completion (Optional[OnCompletionBehavior], default: None ) –

    Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'.

  • webhook (Optional[str], default: None ) –

    Webhook to call after LangGraph API call is done.

  • multitask_strategy (Optional[MultitaskStrategy], default: None ) –

    Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.

  • if_not_exists (Optional[IfNotExists], default: None ) –

    How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread).

  • after_seconds (Optional[int], default: None ) –

    The number of seconds to wait before starting the run. Use to schedule future runs.

Returns:

  • AsyncIterator[StreamPart]

    AsyncIterator[StreamPart]: Asynchronous iterator of stream results.

Example Usage:

async for chunk in client.runs.stream(
    thread_id=None,
    assistant_id="agent",
    input={"messages": [{"role": "user", "content": "how are you?"}]},
    stream_mode=["values","debug"],
    metadata={"name":"my_run"},
    config={"configurable": {"model_name": "anthropic"}},
    interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
    interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
    feedback_keys=["my_feedback_key_1","my_feedback_key_2"],
    webhook="https://my.fake.webhook.com",
    multitask_strategy="interrupt"
):
    print(chunk)

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

StreamPart(event='metadata', data={'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2'})
StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}]})
StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}, {'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None}]})
StreamPart(event='end', data=None)
Source code in libs/sdk-py/langgraph_sdk/client.py
def stream(
    self,
    thread_id: Optional[str],
    assistant_id: str,
    *,
    input: Optional[dict] = None,
    command: Optional[Command] = None,
    stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
    stream_subgraphs: bool = False,
    metadata: Optional[dict] = None,
    config: Optional[Config] = None,
    checkpoint: Optional[Checkpoint] = None,
    checkpoint_id: Optional[str] = None,
    interrupt_before: Optional[Union[All, Sequence[str]]] = None,
    interrupt_after: Optional[Union[All, Sequence[str]]] = None,
    feedback_keys: Optional[Sequence[str]] = None,
    on_disconnect: Optional[DisconnectMode] = None,
    on_completion: Optional[OnCompletionBehavior] = None,
    webhook: Optional[str] = None,
    multitask_strategy: Optional[MultitaskStrategy] = None,
    if_not_exists: Optional[IfNotExists] = None,
    after_seconds: Optional[int] = None,
) -> AsyncIterator[StreamPart]:
    """Create a run and stream the results.

    Args:
        thread_id: the thread ID to assign to the thread.
            If None will create a stateless run.
        assistant_id: The assistant ID or graph name to stream from.
            If using graph name, will default to first assistant created from that graph.
        input: The input to the graph.
        command: A command to execute. Cannot be combined with input.
        stream_mode: The stream mode(s) to use.
        stream_subgraphs: Whether to stream output from subgraphs.
        metadata: Metadata to assign to the run.
        config: The configuration for the assistant.
        checkpoint: The checkpoint to resume from.
        interrupt_before: Nodes to interrupt immediately before they get executed.
        interrupt_after: Nodes to Nodes to interrupt immediately after they get executed.
        feedback_keys: Feedback keys to assign to run.
        on_disconnect: The disconnect mode to use.
            Must be one of 'cancel' or 'continue'.
        on_completion: Whether to delete or keep the thread created for a stateless run.
            Must be one of 'delete' or 'keep'.
        webhook: Webhook to call after LangGraph API call is done.
        multitask_strategy: Multitask strategy to use.
            Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.
        if_not_exists: How to handle missing thread. Defaults to 'reject'.
            Must be either 'reject' (raise error if missing), or 'create' (create new thread).
        after_seconds: The number of seconds to wait before starting the run.
            Use to schedule future runs.

    Returns:
        AsyncIterator[StreamPart]: Asynchronous iterator of stream results.

    Example Usage:

        async for chunk in client.runs.stream(
            thread_id=None,
            assistant_id="agent",
            input={"messages": [{"role": "user", "content": "how are you?"}]},
            stream_mode=["values","debug"],
            metadata={"name":"my_run"},
            config={"configurable": {"model_name": "anthropic"}},
            interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
            interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
            feedback_keys=["my_feedback_key_1","my_feedback_key_2"],
            webhook="https://my.fake.webhook.com",
            multitask_strategy="interrupt"
        ):
            print(chunk)

        ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

        StreamPart(event='metadata', data={'run_id': '1ef4a9b8-d7da-679a-a45a-872054341df2'})
        StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}]})
        StreamPart(event='values', data={'messages': [{'content': 'how are you?', 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'human', 'name': None, 'id': 'fe0a5778-cfe9-42ee-b807-0adaa1873c10', 'example': False}, {'content': "I'm doing well, thanks for asking! I'm an AI assistant created by Anthropic to be helpful, honest, and harmless.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'ai', 'name': None, 'id': 'run-159b782c-b679-4830-83c6-cef87798fe8b', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': None}]})
        StreamPart(event='end', data=None)

    """  # noqa: E501
    payload = {
        "input": input,
        "command": command,
        "config": config,
        "metadata": metadata,
        "stream_mode": stream_mode,
        "stream_subgraphs": stream_subgraphs,
        "assistant_id": assistant_id,
        "interrupt_before": interrupt_before,
        "interrupt_after": interrupt_after,
        "feedback_keys": feedback_keys,
        "webhook": webhook,
        "checkpoint": checkpoint,
        "checkpoint_id": checkpoint_id,
        "multitask_strategy": multitask_strategy,
        "if_not_exists": if_not_exists,
        "on_disconnect": on_disconnect,
        "on_completion": on_completion,
        "after_seconds": after_seconds,
    }
    endpoint = (
        f"/threads/{thread_id}/runs/stream"
        if thread_id is not None
        else "/runs/stream"
    )
    return self.http.stream(
        endpoint, "POST", json={k: v for k, v in payload.items() if v is not None}
    )

create(thread_id: Optional[str], assistant_id: str, *, input: Optional[dict] = None, command: Optional[Command] = None, stream_mode: Union[StreamMode, Sequence[StreamMode]] = 'values', stream_subgraphs: bool = False, metadata: Optional[dict] = None, config: Optional[Config] = None, checkpoint: Optional[Checkpoint] = None, checkpoint_id: Optional[str] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, webhook: Optional[str] = None, multitask_strategy: Optional[MultitaskStrategy] = None, if_not_exists: Optional[IfNotExists] = None, on_completion: Optional[OnCompletionBehavior] = None, after_seconds: Optional[int] = None) -> Run async

Create a background run.

Parameters:

  • thread_id (Optional[str]) –

    the thread ID to assign to the thread. If None will create a stateless run.

  • assistant_id (str) –

    The assistant ID or graph name to stream from. If using graph name, will default to first assistant created from that graph.

  • input (Optional[dict], default: None ) –

    The input to the graph.

  • command (Optional[Command], default: None ) –

    A command to execute. Cannot be combined with input.

  • stream_mode (Union[StreamMode, Sequence[StreamMode]], default: 'values' ) –

    The stream mode(s) to use.

  • stream_subgraphs (bool, default: False ) –

    Whether to stream output from subgraphs.

  • metadata (Optional[dict], default: None ) –

    Metadata to assign to the run.

  • config (Optional[Config], default: None ) –

    The configuration for the assistant.

  • checkpoint (Optional[Checkpoint], default: None ) –

    The checkpoint to resume from.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt immediately before they get executed.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to Nodes to interrupt immediately after they get executed.

  • webhook (Optional[str], default: None ) –

    Webhook to call after LangGraph API call is done.

  • multitask_strategy (Optional[MultitaskStrategy], default: None ) –

    Multitask strategy to use. Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.

  • on_completion (Optional[OnCompletionBehavior], default: None ) –

    Whether to delete or keep the thread created for a stateless run. Must be one of 'delete' or 'keep'.

  • if_not_exists (Optional[IfNotExists], default: None ) –

    How to handle missing thread. Defaults to 'reject'. Must be either 'reject' (raise error if missing), or 'create' (create new thread).

  • after_seconds (Optional[int], default: None ) –

    The number of seconds to wait before starting the run. Use to schedule future runs.

Returns:

  • Run ( Run ) –

    The created background run.

Example Usage:

background_run = await client.runs.create(
    thread_id="my_thread_id",
    assistant_id="my_assistant_id",
    input={"messages": [{"role": "user", "content": "hello!"}]},
    metadata={"name":"my_run"},
    config={"configurable": {"model_name": "openai"}},
    interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
    interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
    webhook="https://my.fake.webhook.com",
    multitask_strategy="interrupt"
)
print(background_run)

--------------------------------------------------------------------------------

{
    'run_id': 'my_run_id',
    'thread_id': 'my_thread_id',
    'assistant_id': 'my_assistant_id',
    'created_at': '2024-07-25T15:35:42.598503+00:00',
    'updated_at': '2024-07-25T15:35:42.598503+00:00',
    'metadata': {},
    'status': 'pending',
    'kwargs':
        {
            'input':
                {
                    'messages': [
                        {
                            'role': 'user',
                            'content': 'how are you?'
                        }
                    ]
                },
            'config':
                {
                    'metadata':
                        {
                            'created_by': 'system'
                        },
                    'configurable':
                        {
                            'run_id': 'my_run_id',
                            'user_id': None,
                            'graph_id': 'agent',
                            'thread_id': 'my_thread_id',
                            'checkpoint_id': None,
                            'model_name': "openai",
                            'assistant_id': 'my_assistant_id'
                        }
                },
            'webhook': "https://my.fake.webhook.com",
            'temporary': False,
            'stream_mode': ['values'],
            'feedback_keys': None,
            'interrupt_after': ["node_to_stop_after_1","node_to_stop_after_2"],
            'interrupt_before': ["node_to_stop_before_1","node_to_stop_before_2"]
        },
    'multitask_strategy': 'interrupt'
}
Source code in libs/sdk-py/langgraph_sdk/client.py
async def create(
    self,
    thread_id: Optional[str],
    assistant_id: str,
    *,
    input: Optional[dict] = None,
    command: Optional[Command] = None,
    stream_mode: Union[StreamMode, Sequence[StreamMode]] = "values",
    stream_subgraphs: bool = False,
    metadata: Optional[dict] = None,
    config: Optional[Config] = None,
    checkpoint: Optional[Checkpoint] = None,
    checkpoint_id: Optional[str] = None,
    interrupt_before: Optional[Union[All, Sequence[str]]] = None,
    interrupt_after: Optional[Union[All, Sequence[str]]] = None,
    webhook: Optional[str] = None,
    multitask_strategy: Optional[MultitaskStrategy] = None,
    if_not_exists: Optional[IfNotExists] = None,
    on_completion: Optional[OnCompletionBehavior] = None,
    after_seconds: Optional[int] = None,
) -> Run:
    """Create a background run.

    Args:
        thread_id: the thread ID to assign to the thread.
            If None will create a stateless run.
        assistant_id: The assistant ID or graph name to stream from.
            If using graph name, will default to first assistant created from that graph.
        input: The input to the graph.
        command: A command to execute. Cannot be combined with input.
        stream_mode: The stream mode(s) to use.
        stream_subgraphs: Whether to stream output from subgraphs.
        metadata: Metadata to assign to the run.
        config: The configuration for the assistant.
        checkpoint: The checkpoint to resume from.
        interrupt_before: Nodes to interrupt immediately before they get executed.
        interrupt_after: Nodes to Nodes to interrupt immediately after they get executed.
        webhook: Webhook to call after LangGraph API call is done.
        multitask_strategy: Multitask strategy to use.
            Must be one of 'reject', 'interrupt', 'rollback', or 'enqueue'.
        on_completion: Whether to delete or keep the thread created for a stateless run.
            Must be one of 'delete' or 'keep'.
        if_not_exists: How to handle missing thread. Defaults to 'reject'.
            Must be either 'reject' (raise error if missing), or 'create' (create new thread).
        after_seconds: The number of seconds to wait before starting the run.
            Use to schedule future runs.

    Returns:
        Run: The created background run.

    Example Usage:

        background_run = await client.runs.create(
            thread_id="my_thread_id",
            assistant_id="my_assistant_id",
            input={"messages": [{"role": "user", "content": "hello!"}]},
            metadata={"name":"my_run"},
            config={"configurable": {"model_name": "openai"}},
            interrupt_before=["node_to_stop_before_1","node_to_stop_before_2"],
            interrupt_after=["node_to_stop_after_1","node_to_stop_after_2"],
            webhook="https://my.fake.webhook.com",
            multitask_strategy="interrupt"
        )
        print(background_run)

        --------------------------------------------------------------------------------

        {
            'run_id': 'my_run_id',
            'thread_id': 'my_thread_id',
            'assistant_id': 'my_assistant_id',
            'created_at': '2024-07-25T15:35:42.598503+00:00',
            'updated_at': '2024-07-25T15:35:42.598503+00:00',
            'metadata': {},
            'status': 'pending',
            'kwargs':
                {
                    'input':
                        {
                            'messages': [
                                {
                                    'role': 'user',
                                    'content': 'how are you?'
                                }
                            ]
                        },
                    'config':
                        {
                            'metadata':
                                {
                                    'created_by': 'system'
                                },
                            'configurable':
                                {
                                    'run_id': 'my_run_id',
                                    'user_id': None,
                                    'graph_id': 'agent',
                                    'thread_id': 'my_thread_id',
                                    'checkpoint_id': None,
                                    'model_name': "openai",
                                    'assistant_id': 'my_assistant_id'
                                }
                        },
                    'webhook': "https://my.fake.webhook.com",