Multi-modal eval: GPT-4 w/ multi-modal embeddings and multi-vector retriever#
Multi-modal slide decks
is a public dataset that contains a dataset of question-answer pairs from slide decks with visual content.
The question-answer pairs are derived from the visual content in the decks, testing the ability of RAG to perform visual reasoning.
We evaluate this dataset using two approaches:
(1) Vectorstore with multimodal embeddings
(2) Multi-vector retriever with indexed image summaries
Pre-requisites#
# %pip install -U langchain langsmith langchain_benchmarks
# %pip install -U openai chromadb pypdfium2 open-clip-torch pillow
import getpass
import os
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
env_vars = ["LANGCHAIN_API_KEY", "OPENAI_API_KEY"]
for var in env_vars:
if var not in os.environ:
os.environ[var] = getpass.getpass(prompt=f"Enter your {var}: ")
Dataset#
We can browse the available LangChain benchmark datasets for retrieval.
from langchain_benchmarks import clone_public_dataset, registry
registry = registry.filter(Type="RetrievalTask")
registry
Name | Type | Dataset ID | Description |
---|---|---|---|
LangChain Docs Q&A | RetrievalTask | 452ccafc-18e1-4314-885b-edd735f17b9d | Questions and answers based on a snapshot of the LangChain python docs. The environment provides the documents and the retriever information. Each example is composed of a question and reference answer. Success is measured based on the accuracy of the answer relative to the reference answer. We also measure the faithfulness of the model's response relative to the retrieved documents (if any). |
Semi-structured Reports | RetrievalTask | c47d9617-ab99-4d6e-a6e6-92b8daf85a7d | Questions and answers based on PDFs containing tables and charts. The task provides the raw documents as well as factory methods to easily index them and create a retriever. Each example is composed of a question and reference answer. Success is measured based on the accuracy of the answer relative to the reference answer. We also measure the faithfulness of the model's response relative to the retrieved documents (if any). |
Multi-modal slide decks | RetrievalTask | 40afc8e7-9d7e-44ed-8971-2cae1eb59731 | This public dataset is a work-in-progress and will be extended over time. Questions and answers based on slide decks containing visual tables and charts. Each example is composed of a question and reference answer. Success is measured based on the accuracy of the answer relative to the reference answer. |
Multi-modal slide decks
is the relevant dataset for our task.
task = registry["Multi-modal slide decks"]
task
Name | Multi-modal slide decks |
Type | RetrievalTask |
Dataset ID | 40afc8e7-9d7e-44ed-8971-2cae1eb59731 |
Description | This public dataset is a work-in-progress and will be extended over time. Questions and answers based on slide decks containing visual tables and charts. Each example is composed of a question and reference answer. Success is measured based on the accuracy of the answer relative to the reference answer. |
Retriever Factories | |
Architecture Factories | |
get_docs | {} |
Clone the dataset so that it’s available in our LangSmith datasets.
clone_public_dataset(task.dataset_id, dataset_name=task.name)
Finished fetching examples. Creating dataset...
New dataset created you can access it at https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08a29acb-5ad6-42ce-a482-574c9e2e5306.
Done creating dataset.
Fetch the associated PDFs from remote cache for the dataset so that we can perform ingestion.
from langchain_benchmarks.rag.tasks.multi_modal_slide_decks import get_file_names
file_names = list(get_file_names()) # PosixPath
Load#
For each presentation, extract an image for each slide.
import os
from pathlib import Path
import pypdfium2 as pdfium
def get_images(file):
"""
Get PIL images from PDF pages and save them to a specified directory
:param file: Path to file
:return: A list of PIL images
"""
# Get presentation
pdf = pdfium.PdfDocument(file)
n_pages = len(pdf)
# Extracting file name and creating the directory for images
file_name = Path(file).stem # Gets the file name without extension
img_dir = os.path.join(Path(file).parent, "img")
os.makedirs(img_dir, exist_ok=True)
# Get images
pil_images = []
print(f"Extracting {n_pages} images for {file.name}")
for page_number in range(n_pages):
page = pdf.get_page(page_number)
bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0))
pil_image = bitmap.to_pil()
pil_images.append(pil_image)
# Saving the image with the specified naming convention
image_path = os.path.join(img_dir, f"{file_name}_image_{page_number + 1}.jpg")
pil_image.save(image_path, format="JPEG")
return pil_images
images = []
for fi in file_names:
images.extend(get_images(fi))
Extracting 30 images for DDOG_Q3_earnings_deck.pdf
Now, we convert each PIL image to a Base64 encoded string and set the image size.
Base64 encoded string can be input to GPT-4V.
import base64
import io
from io import BytesIO
from PIL import Image
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string
:param base64_string: Base64 string
:param size: Image size
:return: Re-sized Base64 string
"""
# Decode the Base64 string
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
# Resize the image
resized_img = img.resize(size, Image.LANCZOS)
# Save the resized image to a bytes buffer
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
# Encode the resized image to Base64
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_str = resize_base64_image(img_str, size=(960, 540))
return img_str
images_base_64 = [convert_to_base64(i) for i in images]
If desired, we can plot the images to confirm that they were extracted correctly.
from IPython.display import HTML, display
def plt_img_base64(img_base64):
"""
Disply base64 encoded string as image
:param img_base64: Base64 string
"""
# Create an HTML img tag with the base64 string as the source
image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'
# Display the image by rendering the HTML
display(HTML(image_html))
i = 10
plt_img_base64(images_base_64[i])
Index#
We will test two approaches.
Option 1: Vectorstore with multimodal embeddings#
Here we will use OpenCLIP multimodal embeddings.
There are many to choose from.
By default, it will use model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
.
This model favorably balances memory and performance.
However, you can test different models by passing them to OpenCLIPEmbeddings as model_name=, checkpoint=
.
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
# Make vectorstore
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
embedding_function=OpenCLIPEmbeddings(),
)
# Read images we extracted above
img_dir = os.path.join(Path(file_names[0]).parent, "img")
image_uris = sorted(
[
os.path.join(img_dir, image_name)
for image_name in os.listdir(img_dir)
if image_name.endswith(".jpg")
]
)
# Add images
vectorstore_mmembd.add_images(uris=image_uris)
# Make retriever
retriever_mmembd = vectorstore_mmembd.as_retriever()
Option 2: Multi-vector retriever#
This approach will generate and index image summaries. See detail here.
It will then retrieve the raw image to pass to GPT-4V for final synthesis.
The idea is that retrieval on image summaries:
Does not rely on multi-modal embeddings
Can perform better at retrieval of visually / semantically similar, but quantitatively different slide content
Note: there OpenAI’s GPT-4V API can experince non-deterministic BadRequestError
, which we handle. Hopefully this is resolved soon.
from langchain.chat_models import ChatOpenAI
from langchain.schema.messages import HumanMessage
def image_summarize(img_base64, prompt):
"""
Make image summary
:param img_base64: Base64 encoded string for image
:param prompt: Text prompt for summarizatiomn
:return: Image summarization prompt
"""
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(img_base64_list):
"""
Generate summaries for images
:param img_base64_list: Base64 encoded images
:return: List of image summaries and processed images
"""
# Store image summaries
image_summaries = []
processed_images = []
# Prompt
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
# Apply summarization to images
for i, base64_image in enumerate(img_base64_list):
try:
image_summaries.append(image_summarize(base64_image, prompt))
processed_images.append(base64_image)
except:
print(f"BadRequestError with image {i+1}")
return image_summaries, processed_images
# Image summaries
image_summaries, images_base_64_processed = generate_img_summaries(images_base_64)
Add raw docs and doc summaries to Multi Vector Retriever:
Store the raw images in the
docstore
.Store the image summaries in the
vectorstore
for semantic retrieval.
import uuid
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.output_parser import StrOutputParser
from langchain.storage import InMemoryStore
def create_multi_vector_retriever(vectorstore, image_summaries, images):
"""
Create retriever that indexes summaries, but returns raw images or texts
:param vectorstore: Vectorstore to store embedded image sumamries
:param image_summaries: Image summaries
:param images: Base64 encoded images
:return: Retriever
"""
# Initialize the storage layer
store = InMemoryStore()
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
# Helper function to add documents to the vectorstore and docstore
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
add_documents(retriever, image_summaries, images)
return retriever
# The vectorstore to use to index the summaries
vectorstore_mvr = Chroma(
collection_name="multi-modal-rag-mv", embedding_function=OpenAIEmbeddings()
)
# Create retriever
retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore_mvr,
image_summaries,
images_base_64_processed,
)
RAG#
Create a pipeline for retrieval of relevant images based on semantic similarity to the input question.
Pass the images to GPT-4V for answer synthesis.
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
def prepare_images(docs):
"""
Prepare iamges for prompt
:param docs: A list of base64-encoded images from retriever.
:return: Dict containing a list of base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
b64_images.append(doc)
return {"images": b64_images}
def img_prompt_func(data_dict, num_images=2):
"""
GPT-4V prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are an analyst tasked with answering questions about visual content.\n"
"You will be give a set of image(s) from a slide deck / presentation.\n"
"Use this information to answer the user question. \n"
f"User-provided question: {data_dict['question']}\n\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain
"""
# Multi-modal LLM
model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024)
# RAG pipeline
chain = (
{
"context": retriever | RunnableLambda(prepare_images),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| StrOutputParser()
)
return chain
# Create RAG chain
chain_multimodal_rag = multi_modal_rag_chain(retriever_multi_vector_img)
chain_multimodal_rag_mmembd = multi_modal_rag_chain(retriever_mmembd)
Eval#
Run evaluation on our dataset:
task.name
is the dataset of QA pairs that we clonedeval_config
specifies the LangSmith evaluator for our dataset, which will use GPT-4 as a graderThe grader will evaluate the chain-generated answer to each question relative to ground truth
import uuid
from langchain.smith import RunEvalConfig
from langsmith.client import Client
# Evaluator configuration
client = Client()
eval_config = RunEvalConfig(
evaluators=["cot_qa"],
)
# Experiments
chain_map = {
"multi_modal_mvretriever_gpt4v": chain_multimodal_rag,
"multi_modal_mmembd_gpt4v": chain_multimodal_rag_mmembd,
}
# Run evaluation
run_id = uuid.uuid4().hex[:4]
test_runs = {}
for project_name, chain in chain_map.items():
test_runs[project_name] = client.run_on_dataset(
dataset_name=task.name,
llm_or_chain_factory=lambda: (lambda x: x["Question"]) | chain,
evaluation=eval_config,
verbose=True,
project_name=f"{project_name}-{run_id}",
project_metadata={"chain": project_name},
)
View the evaluation results for project 'multi_modal_mvretriever_gpt4v-f6f7' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08a29acb-5ad6-42ce-a482-574c9e2e5306/compare?selectedSessions=15dd3901-382c-4f0f-8433-077963fc4bb7
View all tests for Dataset Multi-modal slide decks at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08a29acb-5ad6-42ce-a482-574c9e2e5306
[------------------------------------------------->] 10/10
Experiment Results:
output | feedback.COT Contextual Accuracy | error | execution_time | |
---|---|---|---|---|
count | 10 | 10.0 | 0 | 10.000000 |
unique | 10 | NaN | 0 | NaN |
top | As of the third quarter of 2023 (Q3 2023), Dat... | NaN | NaN | NaN |
freq | 1 | NaN | NaN | NaN |
mean | NaN | 1.0 | NaN | 13.430077 |
std | NaN | 0.0 | NaN | 3.656360 |
min | NaN | 1.0 | NaN | 10.319160 |
25% | NaN | 1.0 | NaN | 10.809424 |
50% | NaN | 1.0 | NaN | 11.675873 |
75% | NaN | 1.0 | NaN | 15.971083 |
max | NaN | 1.0 | NaN | 20.940341 |
View the evaluation results for project 'multi_modal_mmembd_gpt4v-f6f7' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08a29acb-5ad6-42ce-a482-574c9e2e5306/compare?selectedSessions=ed6255b4-23b5-45ee-82f7-bcf6744c3f8e
View all tests for Dataset Multi-modal slide decks at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08a29acb-5ad6-42ce-a482-574c9e2e5306
[------------------------------------------------->] 10/10
Experiment Results:
output | feedback.COT Contextual Accuracy | error | execution_time | |
---|---|---|---|---|
count | 10 | 10.000000 | 0 | 10.000000 |
unique | 10 | NaN | 0 | NaN |
top | The images provided do not contain information... | NaN | NaN | NaN |
freq | 1 | NaN | NaN | NaN |
mean | NaN | 0.500000 | NaN | 15.596197 |
std | NaN | 0.527046 | NaN | 2.716853 |
min | NaN | 0.000000 | NaN | 11.661625 |
25% | NaN | 0.000000 | NaN | 12.941465 |
50% | NaN | 0.500000 | NaN | 16.246343 |
75% | NaN | 1.000000 | NaN | 17.723280 |
max | NaN | 1.000000 | NaN | 18.488639 |