Chat Extraction#

This benchmark combines classification, summarization, and extraction in one a combined task. The model is expected to output formatted json in the expected schema.

# %pip install -U --quiet langchain langchain_benchmarks
# %pip install -U openai rapidfuzz fireworks-ai anthropic

For this code to work, please configure LangSmith environment variables with your credentials, in addition to your LLM providers’ API keys.

import getpass
import os
import uuid

uid = uuid.uuid4().hex[:4]  # Avoid conflicts in project names

# Get your API key from https://smith.langchain.com/settings
api_keys = [
    "LANGCHAIN_API_KEY",
    "OPENAI_API_KEY",
    "ANTHROPIC_API_KEY",
    "FIREWORKS_API_KEY",
]
for key in api_keys:
    if key not in os.environ:
        os.environ[key] = getpass.getpass(f"Enter your {key}: ")
from langchain_benchmarks import clone_public_dataset, registry

task = registry["Chat Extraction"]

# Clone the dataset to your tenant
clone_public_dataset(task.dataset_id, dataset_name=task.name)


task
Dataset Chat Extraction already exists. Skipping.
You can access the dataset at https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6.
Name Chat Extraction
Type ExtractionTask
Dataset ID 00f4444c-9460-4a82-b87a-f50096f1cfef
DescriptionA dataset meant to test the ability of an LLM to extract and infer structured information from a dialogue. The dialogue is between a user and a support engineer. Outputs should be structured as a JSON object and test both the ability of the LLM to correctly structure the information and its ability to perform simple classification tasks.

Schema#

Each extraction task has an expected output schema defined in a Pydantic BaseModel object, which we can use to get a JSON schema object.

task.schema.schema()
{'title': 'GenerateTicket',
 'description': 'Generate a ticket containing all the extracted information.',
 'type': 'object',
 'properties': {'issue_summary': {'title': 'Issue Summary',
   'description': 'short (<10 word) summary of the issue or question',
   'type': 'string'},
  'question': {'title': 'Question',
   'description': 'Information inferred from the the question.',
   'allOf': [{'$ref': '#/definitions/QuestionCategorization'}]},
  'response': {'title': 'Response',
   'description': 'Information inferred from the the response.',
   'allOf': [{'$ref': '#/definitions/ResponseCategorization'}]}},
 'required': ['issue_summary', 'question', 'response'],
 'definitions': {'QuestionCategory': {'title': 'QuestionCategory',
   'description': 'An enumeration.',
   'enum': ['Implementation Issues',
    'Feature Requests',
    'Concept Explanations',
    'Code Optimization',
    'Security and Privacy Concerns',
    'Model Training and Fine-tuning',
    'Data Handling and Manipulation',
    'User Interaction Flow',
    'Technical Integration',
    'Error Handling and Logging',
    'Customization and Configuration',
    'External API and Data Source Integration',
    'Language and Localization',
    'Streaming and Real-time Processing',
    'Tool Development',
    'Function Calling',
    'LLM Integrations',
    'General Agent Question',
    'General Chit Chat',
    'Memory',
    'Debugging Help',
    'Application Design',
    'Prompt Templates',
    'Cost Tracking',
    'Other'],
   'type': 'string'},
  'Sentiment': {'title': 'Sentiment',
   'description': 'An enumeration.',
   'enum': ['Negative', 'Neutral', 'Positive'],
   'type': 'string'},
  'ProgrammingLanguage': {'title': 'ProgrammingLanguage',
   'description': 'An enumeration.',
   'enum': ['python', 'javascript', 'typescript', 'unknown', 'other'],
   'type': 'string'},
  'QuestionCategorization': {'title': 'QuestionCategorization',
   'type': 'object',
   'properties': {'question_category': {'$ref': '#/definitions/QuestionCategory'},
    'category_if_other': {'title': 'Category If Other',
     'description': "question category if the category above is 'other'",
     'type': 'string'},
    'is_off_topic': {'title': 'Is Off Topic',
     'description': 'If the input is general chit chat or does not pertain to technical inqueries about LangChain or building/debugging applications with LLMs/AI, it is off topic. For context, LangChain is a library and framework designed to assist in building applications with LLMs. Questions may also be about similar packages like LangServe, LangSmith, OpenAI, Anthropic, vectorstores, agents, etc.',
     'type': 'boolean'},
    'toxicity': {'title': 'Toxicity',
     'description': 'Whether or not the input question is toxic',
     'default': 0,
     'exclusiveMaximum': 6,
     'minimum': 0,
     'type': 'integer'},
    'sentiment': {'$ref': '#/definitions/Sentiment'},
    'programming_language': {'$ref': '#/definitions/ProgrammingLanguage'}},
   'required': ['question_category',
    'is_off_topic',
    'sentiment',
    'programming_language']},
  'ResponseType': {'title': 'ResponseType',
   'description': 'An enumeration.',
   'enum': ['resolve issue',
    'provide guidance',
    'request information',
    'give up',
    'none',
    'other'],
   'type': 'string'},
  'ResponseCategorization': {'title': 'ResponseCategorization',
   'type': 'object',
   'properties': {'response_type': {'$ref': '#/definitions/ResponseType'},
    'response_type_if_other': {'title': 'Response Type If Other',
     'type': 'string'},
    'confidence_level': {'title': 'Confidence Level',
     'description': 'The confidence of the assistant in its answer.',
     'exclusiveMaximum': 6,
     'minimum': 0,
     'type': 'integer'},
    'followup_actions': {'title': 'Followup Actions',
     'description': 'Actions the assistant recommended the user take.',
     'type': 'array',
     'items': {'type': 'string'}}},
   'required': ['response_type', 'confidence_level']}}}

Define an extraction chain#

Let’s build the extraction chain that we can use to get structured information from the emails.

from langchain.chat_models import ChatOpenAI
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser

llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0).bind_functions(
    functions=[task.schema],
    function_call=task.schema.schema()["title"],
)


def format_run(dialogue_input: dict):
    question = dialogue_input["question"]
    answer = dialogue_input["answer"]
    return {
        "dialogue": f"<question>\n{question}\n</question>\n"
        f"<assistant-response>\n{answer}\n</assistant-response>"
    }


output_parser = JsonOutputFunctionsParser()
extraction_chain = (
    format_run
    | task.instructions
    | llm
    | output_parser
    # Wrap as 'output' so to be unified for the evaluators
    | (lambda x: {"output": x})
)
extraction_chain.invoke(
    {"question": "how do i run llama 2 locally?", "answer": "Llama.cpp of course."}
)
{'output': {'issue_summary': 'Running Llama 2 Locally',
  'question': {'question_category': 'Implementation Issues',
   'is_off_topic': False,
   'sentiment': 'Neutral',
   'programming_language': 'unknown'},
  'response': {'response_type': 'provide guidance', 'confidence_level': 1}}}

Now it’s time to measure our chain’s effectiveness!

Evaluate#

Let’s evaluate the chain now.

from langsmith.client import Client

from langchain_benchmarks.extraction.tasks.chat_extraction import get_eval_config

client = Client()

eval_config = get_eval_config()

test_run = client.run_on_dataset(
    dataset_name=task.name,
    llm_or_chain_factory=extraction_chain,
    evaluation=eval_config,
    verbose=True,
    project_name=f"gpt-4-1106-preview-{uid}",
    project_metadata={
        "arch": "openai-functions",
        "model": "gpt-4-1106-preview",
    },
)
View the evaluation results for project 'gpt-4-1106-preview-5689' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6/compare?selectedSessions=0c022691-a7ac-4545-b2bc-58aab2d476e8

View all tests for Dataset Chat Extraction at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6
[------------------------------------------------->] 27/27

Experiment Results:

feedback.json_edit_distance feedback.json_schema feedback.toxicity_similarity feedback.sentiment_similarity feedback.confidence_level_similarity feedback.question_category feedback.off_topic_similarity feedback.programming_language_similarity error execution_time
count 27.000000 27.0 27.0 27.0 27.000000 27.000000 27.000000 27.000000 0 27.000000
unique NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
mean 0.283000 1.0 0.0 1.0 0.940741 0.555556 0.888889 0.592593 NaN 6.949585
std 0.181282 0.0 0.0 0.0 0.093064 0.506370 0.320256 0.500712 NaN 1.639494
min 0.049430 1.0 0.0 1.0 0.800000 0.000000 0.000000 0.000000 NaN 4.248728
25% 0.104149 1.0 0.0 1.0 0.800000 0.000000 1.000000 0.000000 NaN 5.679244
50% 0.336343 1.0 0.0 1.0 1.000000 1.000000 1.000000 1.000000 NaN 6.558088
75% 0.378270 1.0 0.0 1.0 1.000000 1.000000 1.000000 1.000000 NaN 8.300396
max 0.594255 1.0 0.0 1.0 1.000000 1.000000 1.000000 1.000000 NaN 10.123084

Compare to Claude-2#

Let’s compare our results to Anthropic’s Claude-2. We will mimic the function calling interface.

from typing import Any, Dict, Type

from langchain.chat_models import ChatAnthropic
from langchain.output_parsers.xml import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel

claude_prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a data extraction bot tasked with extracting and inferring information from dialogues and generating tickets. Always respond "
            "only with XML based on the following JSON schema:\n{schema}",
        ),
        (
            "user",
            "Generate a ticket from the following question-response pair:\n"
            "<Dialogue>\n{dialogue}\n</Dialogue>\n"
            "Remember, respond directly with this format:\n"
            "<{function_call}>\n...\n</{function_call}>"
            "RESPOND ONLY IN XML THEN STOP.",
        ),
    ]
)
prompt = claude_prompt.partial(
    schema=task.schema.schema_json(), function_call=task.schema.schema()["title"]
)

claude = ChatAnthropic(model="claude-2", temperature=0, max_tokens_to_sample=2048)


class MergeSchema:
    """Merge the XML Output Parser schema into the output."""

    def __init__(self, schema: Type[BaseModel]):
        self.schema = schema

    @property
    def _func_name(self) -> str:
        return self.schema.__name__

    def _merge_schema(self, parsed_output: Any, schema: Type[BaseModel]):
        merged_output = {}
        if isinstance(parsed_output, dict):
            items = parsed_output.items()
        elif isinstance(parsed_output, list):
            items = [(k, v) for item in parsed_output for k, v in item.items()]
        else:
            return parsed_output

        for key, value in items:
            if key in schema.__fields__:
                field_info = schema.__fields__[key]
                if isinstance(value, list):
                    if issubclass(field_info.type_, (BaseModel, dict)):
                        result = self._merge_schema(value, field_info.type_)
                    elif all(
                        isinstance(item, dict) and item.keys() == {"item"}
                        for item in value
                    ):
                        result = [next(iter(item.values())) for item in value]
                    else:
                        result = value
                else:
                    result = value
            else:
                result = value
            if key in merged_output:
                if isinstance(merged_output[key], list):
                    merged_output[key].append(result)
                else:
                    merged_output[key] = [merged_output[key], result]
            else:
                merged_output[key] = result

        return merged_output

    def __call__(self, parsed_output: dict) -> Dict[str, Any]:
        merged_output = {}
        if self._func_name not in parsed_output:
            return parsed_output
        return {
            self._func_name: self._merge_schema(
                parsed_output[self._func_name], self.schema
            )
        }


def try_parse(llm_output, config):
    try:
        output_chain = XMLOutputParser() | MergeSchema(task.schema)
        parsed = output_chain.invoke(llm_output, config)
        # Wrap as 'output' so to be unified for the evaluators
        return {"output": parsed.get("GenerateTicket")}
    except Exception as e:
        return {"output": llm_output, "error": str(e)}


claude_extraction_chain = format_run | prompt | claude | try_parse
result = claude_extraction_chain.invoke(
    {"question": "how do i run llama 2 locally?", "answer": "Llama.cpp of course."}
)
result
{'output': {'issue_summary': 'How to run Llama locally',
  'question': {'question_category': 'Implementation Issues',
   'is_off_topic': 'false',
   'toxicity': '0',
   'sentiment': 'Neutral',
   'programming_language': 'unknown'},
  'response': {'response_type': 'provide guidance',
   'confidence_level': '3',
   'followup_actions': ['Ask clarifying questions about the specific issue',
    'Provide documentation or examples for running Llama locally']}}}
claude_test_run = client.run_on_dataset(
    dataset_name=task.name,
    llm_or_chain_factory=claude_extraction_chain,
    evaluation=eval_config,
    verbose=True,
    project_name=f"claude-2-json-schema-to-xml-{uid}",
    project_metadata={
        "arch": "claude-json-schema-xml-output",
    },
)
View the evaluation results for project 'claude-2-json-schema-to-xml-5689' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6/compare?selectedSessions=3f590999-a9d1-48be-83dd-e84acb99a195

View all tests for Dataset Chat Extraction at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6
[------------------------------------------------->] 27/27

Experiment Results:

feedback.json_edit_distance feedback.json_schema feedback.toxicity_similarity feedback.sentiment_similarity feedback.confidence_level_similarity feedback.question_category feedback.off_topic_similarity feedback.programming_language_similarity error execution_time
count 27.000000 27.000000 27.0 27.000000 27.000000 27.000000 27.0 27.000000 0 27.000000
unique NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
mean 0.371950 0.777778 1.0 0.925926 0.970370 0.481481 0.0 0.444444 NaN 10.556105
std 0.108628 0.423659 0.0 0.181007 0.072403 0.509175 0.0 0.506370 NaN 1.790352
min 0.105033 0.000000 1.0 0.500000 0.800000 0.000000 0.0 0.000000 NaN 8.435542
25% 0.312445 1.000000 1.0 1.000000 1.000000 0.000000 0.0 0.000000 NaN 9.077631
50% 0.390000 1.000000 1.0 1.000000 1.000000 0.000000 0.0 0.000000 NaN 10.059124
75% 0.462694 1.000000 1.0 1.000000 1.000000 1.000000 0.0 1.000000 NaN 11.795210
max 0.537678 1.000000 1.0 1.000000 1.000000 1.000000 0.0 1.000000 NaN 15.072743

So it looks like edit distance is pretty good, but the schema validation leaves something to be desired.

We’re defining the schema in JSON then requesting XML. Let’s try keeping it unified.

Try with XSD Schema Definition#

In this variant, let’s see if Claude performs better if we keep our structure consistent.

from typing import Any, Dict, Type

from langchain.chat_models import ChatAnthropic
from langchain.output_parsers.xml import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel

# This is the schema the model will populate
xsd = """<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

    <xs:simpleType name="QuestionCategory">
        <xs:restriction base="xs:string">
            <xs:enumeration value="Implementation Issues"/>
            <xs:enumeration value="Feature Requests"/>
            <xs:enumeration value="Concept Explanations"/>
            <xs:enumeration value="Code Optimization"/>
            <xs:enumeration value="Security and Privacy Concerns"/>
            <xs:enumeration value="Model Training and Fine-tuning"/>
            <xs:enumeration value="Data Handling and Manipulation"/>
            <xs:enumeration value="User Interaction Flow"/>
            <xs:enumeration value="Technical Integration"/>
            <xs:enumeration value="Error Handling and Logging"/>
            <xs:enumeration value="Customization and Configuration"/>
            <xs:enumeration value="External API and Data Source Integration"/>
            <xs:enumeration value="Language and Localization"/>
            <xs:enumeration value="Streaming and Real-time Processing"/>
            <xs:enumeration value="Tool Development"/>
            <xs:enumeration value="Function Calling"/>
            <xs:enumeration value="LLM Integrations"/>
            <xs:enumeration value="General Agent Questions"/>
            <xs:enumeration value="General Chit Chat"/>
            <xs:enumeration value="Memory"/>
            <xs:enumeration value="Debugging Help"/>
            <xs:enumeration value="Application Design"/>
            <xs:enumeration value="Prompt Templates"/>
            <xs:enumeration value="Cost Tracking"/>
            <xs:enumeration value="Other"/>
        </xs:restriction>
    </xs:simpleType>

    <xs:simpleType name="Sentiment">
        <xs:restriction base="xs:string">
            <xs:enumeration value="Negative"/>
            <xs:enumeration value="Neutral"/>
            <xs:enumeration value="Positive"/>
        </xs:restriction>
    </xs:simpleType>

    <xs:simpleType name="ProgrammingLanguage">
        <xs:restriction base="xs:string">
            <xs:enumeration value="python"/>
            <xs:enumeration value="javascript"/>
            <xs:enumeration value="typescript"/>
            <xs:enumeration value="unknown"/>
            <xs:enumeration value="other"/>
        </xs:restriction>
    </xs:simpleType>

    <xs:complexType name="QuestionCategorization">
        <xs:sequence>
            <xs:element name="question_category" type="QuestionCategory"/>
            <xs:element name="category_if_other" type="xs:string" minOccurs="0"/>
            <xs:element name="is_off_topic" type="xs:boolean"/>
            <xs:element name="toxicity" type="xs:int">
                <xs:minInclusive value="0"/>
                <xs:maxInclusive value="5"/>
            </xs:element>
            <xs:element name="sentiment" type="Sentiment"/>
            <xs:element name="programming_language" type="ProgrammingLanguage"/>
        </xs:sequence>
    </xs:complexType>

    <xs:simpleType name="ResponseType">
        <xs:restriction base="xs:string">
            <xs:enumeration value="resolve issue"/>
            <xs:enumeration value="provide guidance"/>
            <xs:enumeration value="request information"/>
            <xs:enumeration value="give up"/>
            <xs:enumeration value="none"/>
            <xs:enumeration value="other"/>
        </xs:restriction>
    </xs:simpleType>

    <xs:complexType name="ResponseCategorization">
        <xs:sequence>
            <xs:element name="response_type" type="ResponseType"/>
            <xs:element name="response_type_if_other" type="xs:string" minOccurs="0"/>
            <xs:element name="confidence_level" type="xs:int">
                <xs:minInclusive value="0"/>
                <xs:maxInclusive value="5"/>
            </xs:element>
            <xs:element name="followup_actions" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
    </xs:complexType>

    <xs:complexType name="GenerateTicket">
        <xs:sequence>
            <xs:element name="issue_summary" type="xs:string"/>
            <xs:element name="question" type="QuestionCategorization"/>
            <xs:element name="response" type="ResponseCategorization"/>
        </xs:sequence>
    </xs:complexType>

</xs:schema>"""

prompt = claude_prompt.partial(schema=xsd, function_call=task.schema.schema()["title"])

claude_extraction_chain = format_run | prompt | claude | try_parse
result = claude_extraction_chain.invoke(
    {
        "question": "how do i run llama 2 locally?",
        "answer": "Llama.cpp of course. Afterwords remember to install it, then add it to your path!",
    }
)
result
{'output': {'issue_summary': 'How to run Llama locally',
  'question': {'question_category': 'LLM Integrations',
   'is_off_topic': 'false',
   'toxicity': '0',
   'sentiment': 'Neutral',
   'programming_language': 'unknown'},
  'response': {'response_type': 'provide guidance',
   'confidence_level': '3',
   'followup_actions': ['Install Llama locally', 'Add Llama to path']}}}
claude_xsd_test_run = client.run_on_dataset(
    dataset_name=task.name,
    llm_or_chain_factory=claude_extraction_chain,
    evaluation=eval_config,
    verbose=True,
    project_name=f"claude-2-xsd-to-xml-{uid}",
    project_metadata={
        "arch": "claude-xml",
    },
)
View the evaluation results for project 'claude-2-xsd-to-xml-5689' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6/compare?selectedSessions=dc7656d8-00ef-4048-9ce5-38ef72af593c

View all tests for Dataset Chat Extraction at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6
[------------------------------------------------->] 27/27

Experiment Results:

feedback.json_edit_distance feedback.json_schema feedback.toxicity_similarity feedback.sentiment_similarity feedback.confidence_level_similarity feedback.question_category feedback.off_topic_similarity feedback.programming_language_similarity error execution_time
count 27.000000 27.000000 27.0 27.000000 27.000000 27.000000 27.0 27.000000 0 27.000000
unique NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
mean 0.394232 0.518519 1.0 0.907407 0.970370 0.370370 0.0 0.518519 NaN 11.128319
std 0.117880 0.509175 0.0 0.197924 0.072403 0.492103 0.0 0.509175 NaN 4.845637
min 0.116608 0.000000 1.0 0.500000 0.800000 0.000000 0.0 0.000000 NaN 7.833285
25% 0.332400 0.000000 1.0 1.000000 1.000000 0.000000 0.0 0.000000 NaN 8.888438
50% 0.380435 1.000000 1.0 1.000000 1.000000 0.000000 0.0 1.000000 NaN 9.629613
75% 0.456592 1.000000 1.0 1.000000 1.000000 1.000000 0.0 1.000000 NaN 11.143679
max 0.644007 1.000000 1.0 1.000000 1.000000 1.000000 0.0 1.000000 NaN 32.068304

The json schema metric went down, meaning that the output counter-intuitively is less friendly to our parser than before.

Let’s try with an open source model: llama-v2-34b-code-instruct.

Try with Llama 2#

llama-v2-34b-code-instruct is an open source model that is meant to be good at both code-gen and other tasks. Let’s benchmark it.

import json

from langchain.chat_models import ChatFireworks
from langchain.output_parsers.json import parse_json_markdown

llama_prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a data extraction bot tasked with extracting and inferring information from dialogues and generating tickets. Always respond "
            "only with json based on the following JSON schema:\n{schema}",
        ),
        (
            "user",
            "Generate a ticket from the following question-response pair:\n"
            "<Dialogue>\n{dialogue}\n</Dialogue>\n"
            "Remember, respond directly with this format:\n"
            '{{"{function_call}": ...}}\n'
            "RESPOND ONLY IN JSON THEN STOP.",
        ),
    ]
)

prompt = llama_prompt.partial(
    schema=task.schema.schema_json(), function_call=task.schema.schema()["title"]
)

llm = ChatFireworks(
    model="accounts/fireworks/models/llama-v2-34b-code-instruct",
    temperature=0,
    model_kwargs={"max_tokens": 4000},
)


def parse_output(ai_message):
    content = ai_message.content
    parser = lambda x: json.loads(x, strict=False)
    try:
        parsed = parse_json_markdown(content, parser=parser)
        if "GenerateTicket" in parsed:
            return {"output": parsed["GenerateTicket"]}
        return {"output": parsed}
    except json.JSONDecodeError:
        return {"output": content}


fireworks_extraction_chain = format_run | prompt | llm | parse_output
result = fireworks_extraction_chain.invoke(
    {"question": "how do i run llama 2 locally?", "answer": "Llama.cpp of course."}
)
result
{'output': {'issue_summary': 'How to run Llama 2 locally',
  'question': {'question_category': 'Implementation Issues',
   'is_off_topic': False,
   'toxicity': 0,
   'sentiment': 'Neutral',
   'programming_language': 'cpp'},
  'response': {'response_type': 'Resolve Issue',
   'confidence_level': 5,
   'followup_actions': ['Please provide more information about the environment (OS, versions, etc.) and the specific issue you are experiencing.']}}}
llama_v2_test_run = client.run_on_dataset(
    dataset_name=task.name,
    llm_or_chain_factory=fireworks_extraction_chain,
    evaluation=eval_config,
    verbose=True,
    project_name=f"llama-v2-34b-code-instruct-{uid}",
    project_metadata={"arch": "claude-xml", "model": "llama-v2-34b-code-instruct"},
)
View the evaluation results for project 'llama-v2-34b-code-instruct-5689' at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6/compare?selectedSessions=dc2e0648-7e65-4d60-a149-15c24bca943b

View all tests for Dataset Chat Extraction at:
https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/08042749-504d-4509-9549-5f5c579115f6
[------------------------------------------------->] 27/27

Experiment Results:

feedback.json_edit_distance feedback.json_schema feedback.toxicity_similarity feedback.sentiment_similarity feedback.confidence_level_similarity feedback.question_category feedback.off_topic_similarity feedback.programming_language_similarity error execution_time
count 17.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 27.000000 0 27.000000
unique NaN NaN NaN NaN NaN NaN NaN NaN 0 NaN
top NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
freq NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
mean 0.399687 0.333333 0.444444 0.444444 0.540741 0.074074 0.518519 0.222222 NaN 4.738518
std 0.097771 0.480384 0.506370 0.423659 0.439632 0.266880 0.509175 0.423659 NaN 3.162978
min 0.197279 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 NaN 3.224190
25% 0.325069 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 NaN 3.595067
50% 0.413203 0.000000 0.000000 0.500000 0.800000 0.000000 1.000000 0.000000 NaN 3.744033
75% 0.471366 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 0.000000 NaN 4.211040
max 0.552430 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 NaN 18.660901

Compare Results#

Here, we’ll take a look at the underlying results a little bit. You can review the results to see relative performance in aggregate and on a per-example basis.

df = (
    test_run.to_dataframe()
    .join(claude_test_run.to_dataframe(), rsuffix="_claude")
    .join(claude_xsd_test_run.to_dataframe(), rsuffix="_claude_xsd")
    .join(llama_v2_test_run.to_dataframe(), rsuffix="_llama_v2")
)
df.head(5)
inputs.answer inputs.question outputs.output reference.output feedback.json_edit_distance feedback.json_schema feedback.toxicity_similarity feedback.sentiment_similarity feedback.confidence_level_similarity feedback.question_category ... feedback.json_edit_distance_llama_v2 feedback.json_schema_llama_v2 feedback.toxicity_similarity_llama_v2 feedback.sentiment_similarity_llama_v2 feedback.confidence_level_similarity_llama_v2 feedback.question_category_llama_v2 feedback.off_topic_similarity_llama_v2 feedback.programming_language_similarity_llama_v2 error_llama_v2 execution_time_llama_v2
23a81130-2ad9-46cf-ad27-46589bcea94a Pour joindre les deux outputs, vous pouvez uti... je travail sur python. je souhaite joindre ces... {'issue_summary': 'Joining two outputs in Pyth... {'question': {'toxicity': 0, 'sentiment': 'Neu... 0.089219 1 0 1.0 1.0 1 ... 0.552239 1 0.0 0.5 0.8 0 0 1 None 3.981128
598316ec-f5e2-4b4d-83a8-36adb18e12fe Hmm, I'm not sure. example for dalle agent {'issue_summary': 'Example for DALL-E Agent', ... {'question': {'toxicity': 0, 'sentiment': 'Neu... 0.171103 1 0 1.0 0.8 0 ... NaN 0 0.0 0.0 0.0 0 0 0 None 10.942758
d1a1a2e8-6f4c-4325-8aaa-ea20e2449268 To run Llama2 using pandas, you can follow the... how do I run llama2 using pandas {'issue_summary': 'Running Llama2 with Pandas'... {'question': {'toxicity': 0, 'sentiment': 'Neu... 0.594255 1 0 1.0 1.0 0 ... NaN 0 0.0 0.0 0.0 0 0 0 None 3.628600
140a4819-0046-469d-b4df-8e747ddae112 To clear the conversation in ConversationalRet... if Im useing ConversationalRetrievalChain how ... {'issue_summary': 'Clearing Conversation in Co... {'question': {'toxicity': 0, 'sentiment': 'Neu... 0.353261 1 0 1.0 1.0 0 ... 0.393643 0 1.0 0.5 0.8 0 1 0 None 3.711707
7b0a9dd9-68ce-41a1-9f9d-067d93175477 To perform the task of creating an app that in... I want to create an app which:\n- chats with u... {'issue_summary': 'Building an app with Langch... {'question': {'toxicity': 0, 'sentiment': 'Neu... 0.562950 1 0 1.0 0.8 1 ... 0.436747 1 1.0 0.5 1.0 0 1 1 None 4.410890

5 rows Ă— 56 columns

Here, we compare the aggregate metrics side-by-side#

df = (
    test_run.get_aggregate_feedback()
    .add_suffix(".gpt-4")
    .join(claude_test_run.get_aggregate_feedback(), rsuffix=".claude")
    .join(claude_xsd_test_run.get_aggregate_feedback(), rsuffix=".claude_xsd")
    .join(llama_v2_test_run.get_aggregate_feedback(), rsuffix=".llama_v2")
)
from IPython.display import HTML, display

feedback_columns = sorted(
    {col.rsplit(".", 1)[0] for col in df.columns if col.startswith("feedback.")}
)


def render_metric(df, metric):
    sub_cols = [col for col in df.columns if col.startswith(metric)]
    display(HTML(f"<h3>{metric.split('.')[-1]}</h3>"))
    display(df[sub_cols][df.index.isin(["mean", "std"])])
feedback_columns
['feedback',
 'feedback.confidence_level_similarity',
 'feedback.json_edit_distance',
 'feedback.json_schema',
 'feedback.off_topic_similarity',
 'feedback.programming_language_similarity',
 'feedback.question_category',
 'feedback.sentiment_similarity',
 'feedback.toxicity_similarity']
render_metric(df, "execution_time")

execution_time

execution_time.gpt-4 execution_time execution_time.claude_xsd execution_time.llama_v2
mean 6.949585 10.556105 11.128319 4.738518
std 1.639494 1.790352 4.845637 3.162978
for metric in feedback_columns:
    render_metric(df, metric)

feedback

feedback.json_edit_distance.gpt-4 feedback.json_schema.gpt-4 feedback.toxicity_similarity.gpt-4 feedback.sentiment_similarity.gpt-4 feedback.confidence_level_similarity.gpt-4 feedback.question_category.gpt-4 feedback.off_topic_similarity.gpt-4 feedback.programming_language_similarity.gpt-4 feedback.json_edit_distance feedback.json_schema ... feedback.off_topic_similarity.claude_xsd feedback.programming_language_similarity.claude_xsd feedback.json_edit_distance.llama_v2 feedback.json_schema.llama_v2 feedback.toxicity_similarity.llama_v2 feedback.sentiment_similarity.llama_v2 feedback.confidence_level_similarity.llama_v2 feedback.question_category.llama_v2 feedback.off_topic_similarity.llama_v2 feedback.programming_language_similarity.llama_v2
mean 0.283000 1.0 0.0 1.0 0.940741 0.555556 0.888889 0.592593 0.371950 0.777778 ... 0.0 0.518519 0.399687 0.333333 0.444444 0.444444 0.540741 0.074074 0.518519 0.222222
std 0.181282 0.0 0.0 0.0 0.093064 0.506370 0.320256 0.500712 0.108628 0.423659 ... 0.0 0.509175 0.097771 0.480384 0.506370 0.423659 0.439632 0.266880 0.509175 0.423659

2 rows Ă— 32 columns

confidence_level_similarity

feedback.confidence_level_similarity.gpt-4 feedback.confidence_level_similarity feedback.confidence_level_similarity.claude_xsd feedback.confidence_level_similarity.llama_v2
mean 0.940741 0.970370 0.970370 0.540741
std 0.093064 0.072403 0.072403 0.439632

json_edit_distance

feedback.json_edit_distance.gpt-4 feedback.json_edit_distance feedback.json_edit_distance.claude_xsd feedback.json_edit_distance.llama_v2
mean 0.283000 0.371950 0.394232 0.399687
std 0.181282 0.108628 0.117880 0.097771

json_schema

feedback.json_schema.gpt-4 feedback.json_schema feedback.json_schema.claude_xsd feedback.json_schema.llama_v2
mean 1.0 0.777778 0.518519 0.333333
std 0.0 0.423659 0.509175 0.480384

off_topic_similarity

feedback.off_topic_similarity.gpt-4 feedback.off_topic_similarity feedback.off_topic_similarity.claude_xsd feedback.off_topic_similarity.llama_v2
mean 0.888889 0.0 0.0 0.518519
std 0.320256 0.0 0.0 0.509175

programming_language_similarity

feedback.programming_language_similarity.gpt-4 feedback.programming_language_similarity feedback.programming_language_similarity.claude_xsd feedback.programming_language_similarity.llama_v2
mean 0.592593 0.444444 0.518519 0.222222
std 0.500712 0.506370 0.509175 0.423659

question_category

feedback.question_category.gpt-4 feedback.question_category feedback.question_category.claude_xsd feedback.question_category.llama_v2
mean 0.555556 0.481481 0.370370 0.074074
std 0.506370 0.509175 0.492103 0.266880

sentiment_similarity

feedback.sentiment_similarity.gpt-4 feedback.sentiment_similarity feedback.sentiment_similarity.claude_xsd feedback.sentiment_similarity.llama_v2
mean 1.0 0.925926 0.907407 0.444444
std 0.0 0.181007 0.197924 0.423659

toxicity_similarity

feedback.toxicity_similarity.gpt-4 feedback.toxicity_similarity feedback.toxicity_similarity.claude_xsd feedback.toxicity_similarity.llama_v2
mean 0.0 1.0 1.0 0.444444
std 0.0 0.0 0.0 0.506370

Next Steps#

Try it out yourself! You can see some additional experiments on Open Source models in this repo.