How to wait for user input using interrupt
¶
Prerequisites
This guide assumes familiarity with the following concepts:
Human-in-the-loop (HIL) interactions are crucial for agentic systems. Waiting for human input is a common HIL interaction pattern, allowing the agent to ask the user clarifying questions and await input before proceeding.
We can implement this in LangGraph using the function. interrupt
allows us to stop graph execution to collect input from a user and continue execution with collected input.
Setup¶
We are not going to show the full code for the graph we are hosting, but you can see it here if you want to. Once this graph is hosted, we are ready to invoke it and wait for user input.
SDK initialization¶
First, we need to setup our client so that we can communicate with our hosted graph:
Waiting for user input¶
Initial invocation¶
Now, let's invoke our graph.
const input = {
messages: [
{
role: "human",
content: "Ask the user where they are, then look up the weather there" }
]
};
const streamResponse = client.runs.stream(
thread["thread_id"],
assistantId,
{
input: input,
streamMode: "updates",
}
);
for await (const chunk of streamResponse) {
if (chunk.data && chunk.event !== "metadata") {
console.log(chunk.data);
}
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
\"assistant_id\": \"agent\",
\"input\": {\"messages\": [{\"role\": \"human\", \"content\": \"Ask the user where they are, then look up the weather there\"}]},
\"stream_mode\": [
\"updates\"
]
}"
Output:
{'agent': {'messages': [{'content': [{'text': "I'll help you ask the user about their location and then search for weather information.", 'type': 'text'}, {'id': 'toolu_012JeNEvyePZFWK39d52Wdwi', 'input': {'question': 'Where are you located?'}, 'name': 'AskHuman', 'type': 'tool_use'}], 'additional_kwargs': {}, 'response_metadata': {'id': 'msg_01UBEdS6UvuFMetdokNsykVG', 'model': 'claude-3-5-sonnet-20241022', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 438, 'output_tokens': 76}, 'model_name': 'claude-3-5-sonnet-20241022'}, 'type': 'ai', 'name': None, 'id': 'run-1b1210d8-39e0-4607-9f0e-0ea932d28d5c-0', 'example': False, 'tool_calls': [{'name': 'AskHuman', 'args': {'question': 'Where are you located?'}, 'id': 'toolu_012JeNEvyePZFWK39d52Wdwi', 'type': 'tool_call'}], 'invalid_tool_calls': [], 'usage_metadata': {'input_tokens': 438, 'output_tokens': 76, 'total_tokens': 514, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}]}}
{'__interrupt__': [{'value': 'Where are you located?', 'resumable': True, 'ns': ['ask_human:2d41f894-f297-211e-9bfe-1d162ecba54a'], 'when': 'during'}]}
You can see that our graph got interrupted inside the ask_human
node, which is now waiting for a location
to be provided.
Providing human input¶
We can provide human input (location
) by invoking the graph with a Command(resume="<location>")
:
Output:
{'ask_human': {'messages': [{'tool_call_id': 'toolu_012JeNEvyePZFWK39d52Wdwi', 'type': 'tool', 'content': 'san francisco'}]}}
{'agent': {'messages': [{'content': [{'text': 'Let me search for the weather in San Francisco.', 'type': 'text'}, {'id': 'toolu_019f9Y7ST6rNeDQkDjFCHk6C', 'input': {'query': 'current weather in san francisco'}, 'name': 'search', 'type': 'tool_use'}], 'additional_kwargs': {}, 'response_metadata': {'id': 'msg_0152YFm7DtnzfZQuiMUzaSsw', 'model': 'claude-3-5-sonnet-20241022', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 527, 'output_tokens': 67}, 'model_name': 'claude-3-5-sonnet-20241022'}, 'type': 'ai', 'name': None, 'id': 'run-f509b5b2-eb30-4200-a8da-fa79ed68812a-0', 'example': False, 'tool_calls': [{'name': 'search', 'args': {'query': 'current weather in san francisco'}, 'id': 'toolu_019f9Y7ST6rNeDQkDjFCHk6C', 'type': 'tool_call'}], 'invalid_tool_calls': [], 'usage_metadata': {'input_tokens': 527, 'output_tokens': 67, 'total_tokens': 594, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}]}}
{'action': {'messages': [{'content': "I looked up: current weather in san francisco. Result: It's sunny in San Francisco, but you better look out if you're a Gemini 😈.", 'additional_kwargs': {}, 'response_metadata': {}, 'type': 'tool', 'name': 'search', 'id': 'cbd0f623-cc12-48a2-8c18-3cbb943e46e0', 'tool_call_id': 'toolu_019f9Y7ST6rNeDQkDjFCHk6C', 'artifact': None, 'status': 'success'}]}}
{'agent': {'messages': [{'content': "Based on the search results, it's currently sunny in San Francisco. Would you like any specific details about the weather forecast?", 'additional_kwargs': {}, 'response_metadata': {'id': 'msg_01FhzXj72CehBYkJGX69vsBc', 'model': 'claude-3-5-sonnet-20241022', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 639, 'output_tokens': 29}, 'model_name': 'claude-3-5-sonnet-20241022'}, 'type': 'ai', 'name': None, 'id': 'run-f48e818e-dd88-415e-9a0b-4a958498b553-0', 'example': False, 'tool_calls': [], 'invalid_tool_calls': [], 'usage_metadata': {'input_tokens': 639, 'output_tokens': 29, 'total_tokens': 668, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}}}]}}