Skip to content

Storage

Base classes and types for persistent key-value stores.

Stores provide long-term memory that persists across threads and conversations. Supports hierarchical namespaces, key-value storage, and optional vector search.

Core types
  • BaseStore: Store interface with sync/async operations
  • Item: Stored key-value pairs with metadata
  • Op: Get/Put/Search/List operations

NamespacePath module-attribute

NamespacePath = tuple[Union[str, Literal['*']], ...]

A tuple representing a namespace path that can include wildcards.

Examples
("users",)  # Exact users namespace
("documents", "*")  # Any sub-namespace under documents
("cache", "*", "v1")  # Any cache category with v1 version

NamespaceMatchType module-attribute

NamespaceMatchType = Literal['prefix', 'suffix']

Specifies how to match namespace paths.

Values

"prefix": Match from the start of the namespace "suffix": Match from the end of the namespace

Embeddings

Bases: ABC

Interface for embedding models.

This is an interface meant for implementing text embedding models.

Text embedding models are used to map text to a vector (a point in n-dimensional space).

Texts that are similar will usually be mapped to points that are close to each other in this space. The exact details of what's considered "similar" and how "distance" is measured in this space are dependent on the specific embedding model.

This abstraction contains a method for embedding a list of documents and a method for embedding a query text. The embedding of a query text is expected to be a single vector, while the embedding of a list of documents is expected to be a list of vectors.

Usually the query embedding is identical to the document embedding, but the abstraction allows treating them independently.

In addition to the synchronous methods, this interface also provides asynchronous versions of the methods.

By default, the asynchronous methods are implemented using the synchronous methods; however, implementations may choose to override the asynchronous methods with an async native implementation for performance reasons.

embed_documents abstractmethod

embed_documents(texts: list[str]) -> list[list[float]]

Embed search docs.

Parameters:

  • texts (list[str]) –

    List of text to embed.

Returns:

  • list[list[float]]

    List of embeddings.

embed_query abstractmethod

embed_query(text: str) -> list[float]

Embed query text.

Parameters:

  • text (str) –

    Text to embed.

Returns:

  • list[float]

    Embedding.

aembed_documents async

aembed_documents(texts: list[str]) -> list[list[float]]

Asynchronous Embed search docs.

Parameters:

  • texts (list[str]) –

    List of text to embed.

Returns:

  • list[list[float]]

    List of embeddings.

aembed_query async

aembed_query(text: str) -> list[float]

Asynchronous Embed query text.

Parameters:

  • text (str) –

    Text to embed.

Returns:

  • list[float]

    Embedding.

NotProvided

Sentinel singleton.

Item

Represents a stored item with metadata.

Parameters:

  • value (dict[str, Any]) –

    The stored data as a dictionary. Keys are filterable.

  • key (str) –

    Unique identifier within the namespace.

  • namespace (tuple[str, ...]) –

    Hierarchical path defining the collection in which this document resides. Represented as a tuple of strings, allowing for nested categorization. For example: ("documents", 'user123')

  • created_at (datetime) –

    Timestamp of item creation.

  • updated_at (datetime) –

    Timestamp of last update.

SearchItem

Bases: Item

Represents an item returned from a search operation with additional metadata.

__init__

__init__(
    namespace: tuple[str, ...],
    key: str,
    value: dict[str, Any],
    created_at: datetime,
    updated_at: datetime,
    score: Optional[float] = None,
) -> None

Initialize a result item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path to the item.

  • key (str) –

    Unique identifier within the namespace.

  • value (dict[str, Any]) –

    The stored value.

  • created_at (datetime) –

    When the item was first created.

  • updated_at (datetime) –

    When the item was last updated.

  • score (Optional[float], default: None ) –

    Relevance/similarity score if from a ranked operation.

GetOp

Bases: NamedTuple

Operation to retrieve a specific item by its namespace and key.

This operation allows precise retrieval of stored items using their full path (namespace) and unique identifier (key) combination.

Examples

Basic item retrieval:

GetOp(namespace=("users", "profiles"), key="user123")
GetOp(namespace=("cache", "embeddings"), key="doc456")

namespace instance-attribute

namespace: tuple[str, ...]

Hierarchical path that uniquely identifies the item's location.

Examples
("users",)  # Root level users namespace
("users", "profiles")  # Profiles within users namespace

key instance-attribute

key: str

Unique identifier for the item within its specific namespace.

Examples
"user123"  # For a user profile
"doc456"  # For a document

refresh_ttl class-attribute instance-attribute

refresh_ttl: bool = True

Whether to refresh TTLs for the returned item.

If no TTL was specified for the original item(s), or if TTL support is not enabled for your adapter, this argument is ignored.

SearchOp

Bases: NamedTuple

Operation to search for items within a specified namespace hierarchy.

This operation supports both structured filtering and natural language search within a given namespace prefix. It provides pagination through limit and offset parameters.

Note

Natural language search support depends on your store implementation.

Examples

Search with filters and pagination:

SearchOp(
    namespace_prefix=("documents",),
    filter={"type": "report", "status": "active"},
    limit=5,
    offset=10
)

Natural language search:

SearchOp(
    namespace_prefix=("users", "content"),
    query="technical documentation about APIs",
    limit=20
)

namespace_prefix instance-attribute

namespace_prefix: tuple[str, ...]

Hierarchical path prefix defining the search scope.

Examples
()  # Search entire store
("documents",)  # Search all documents
("users", "content")  # Search within user content

filter class-attribute instance-attribute

filter: Optional[dict[str, Any]] = None

Key-value pairs for filtering results based on exact matches or comparison operators.

The filter supports both exact matches and operator-based comparisons.

Supported Operators
  • $eq: Equal to (same as direct value comparison)
  • $ne: Not equal to
  • $gt: Greater than
  • $gte: Greater than or equal to
  • $lt: Less than
  • $lte: Less than or equal to
Examples

Simple exact match:

{"status": "active"}

Comparison operators:

{"score": {"$gt": 4.99}}  # Score greater than 4.99

Multiple conditions:

{
    "score": {"$gte": 3.0},
    "color": "red"
}

limit class-attribute instance-attribute

limit: int = 10

Maximum number of items to return in the search results.

offset class-attribute instance-attribute

offset: int = 0

Number of matching items to skip for pagination.

query class-attribute instance-attribute

query: Optional[str] = None

Natural language search query for semantic search capabilities.

Examples
  • "technical documentation about REST APIs"
  • "machine learning papers from 2023"

refresh_ttl class-attribute instance-attribute

refresh_ttl: bool = True

Whether to refresh TTLs for the returned item.

If no TTL was specified for the original item(s), or if TTL support is not enabled for your adapter, this argument is ignored.

MatchCondition

Bases: NamedTuple

Represents a pattern for matching namespaces in the store.

This class combines a match type (prefix or suffix) with a namespace path pattern that can include wildcards to flexibly match different namespace hierarchies.

Examples

Prefix matching:

MatchCondition(match_type="prefix", path=("users", "profiles"))

Suffix matching with wildcard:

MatchCondition(match_type="suffix", path=("cache", "*"))

Simple suffix matching:

MatchCondition(match_type="suffix", path=("v1",))

match_type instance-attribute

match_type: NamespaceMatchType

Type of namespace matching to perform.

path instance-attribute

path: NamespacePath

Namespace path pattern that can include wildcards.

ListNamespacesOp

Bases: NamedTuple

Operation to list and filter namespaces in the store.

This operation allows exploring the organization of data, finding specific collections, and navigating the namespace hierarchy.

Examples

List all namespaces under the "documents" path:

ListNamespacesOp(
    match_conditions=(MatchCondition(match_type="prefix", path=("documents",)),),
    max_depth=2
)

List all namespaces that end with "v1":

ListNamespacesOp(
    match_conditions=(MatchCondition(match_type="suffix", path=("v1",)),),
    limit=50
)

match_conditions class-attribute instance-attribute

match_conditions: Optional[tuple[MatchCondition, ...]] = (
    None
)

Optional conditions for filtering namespaces.

Examples

All user namespaces:

(MatchCondition(match_type="prefix", path=("users",)),)

All namespaces that start with "docs" and end with "draft":

(
    MatchCondition(match_type="prefix", path=("docs",)),
    MatchCondition(match_type="suffix", path=("draft",))
) 

max_depth class-attribute instance-attribute

max_depth: Optional[int] = None

Maximum depth of namespace hierarchy to return.

Note

Namespaces deeper than this level will be truncated.

limit class-attribute instance-attribute

limit: int = 100

Maximum number of namespaces to return.

offset class-attribute instance-attribute

offset: int = 0

Number of namespaces to skip for pagination.

PutOp

Bases: NamedTuple

Operation to store, update, or delete an item in the store.

This class represents a single operation to modify the store's contents, whether adding new items, updating existing ones, or removing them.

namespace instance-attribute

namespace: tuple[str, ...]

Hierarchical path that identifies the location of the item.

The namespace acts as a folder-like structure to organize items. Each element in the tuple represents one level in the hierarchy.

Examples

Root level documents

("documents",)

User-specific documents

("documents", "user123")

Nested cache structure

("cache", "embeddings", "v1")

key instance-attribute

key: str

Unique identifier for the item within its namespace.

The key must be unique within the specific namespace to avoid conflicts. Together with the namespace, it forms a complete path to the item.

Example

If namespace is ("documents", "user123") and key is "report1", the full path would effectively be "documents/user123/report1"

value instance-attribute

value: Optional[dict[str, Any]]

The data to store, or None to mark the item for deletion.

The value must be a dictionary with string keys and JSON-serializable values. Setting this to None signals that the item should be deleted.

Example

{ "field1": "string value", "field2": 123, "nested": {"can": "contain", "any": "serializable data"} }

index class-attribute instance-attribute

index: Optional[Union[Literal[False], list[str]]] = None

Controls how the item's fields are indexed for search operations.

The item remains accessible through direct get() operations regardless of indexing. When indexed, fields can be searched using natural language queries through vector similarity search (if supported by the store implementation).

Path Syntax
  • Simple field access: "field"
  • Nested fields: "parent.child.grandchild"
  • Array indexing:
  • Specific index: "array[0]"
  • Last element: "array[-1]"
  • All elements (each individually): "array[*]"
Examples
  • None - Use store defaults (whole item)
  • list[str] - List of fields to index
[
    "metadata.title",                    # Nested field access
    "context[*].content",                # Index content from all context as separate vectors
    "authors[0].name",                   # First author's name
    "revisions[-1].changes",             # Most recent revision's changes
    "sections[*].paragraphs[*].text",    # All text from all paragraphs in all sections
    "metadata.tags[*]",                  # All tags in metadata
]

ttl class-attribute instance-attribute

ttl: Optional[float] = None

Controls the TTL (time-to-live) for the item in minutes.

If provided, and if the store you are using supports this feature, the item will expire this many minutes after it was last accessed. The expiration timer refreshes on both read operations (get/search) and write operations (put/update). When the TTL expires, the item will be scheduled for deletion on a best-effort basis. Defaults to None (no expiration).

InvalidNamespaceError

Bases: ValueError

Provided namespace is invalid.

TTLConfig

Bases: TypedDict

Configuration for TTL (time-to-live) behavior in the store.

refresh_on_read instance-attribute

refresh_on_read: bool

Default behavior for refreshing TTLs on read operations (GET and SEARCH).

If True, TTLs will be refreshed on read operations (get/search) by default. This can be overridden per-operation by explicitly setting refresh_ttl. Defaults to True if not configured.

default_ttl instance-attribute

default_ttl: Optional[float]

Default TTL (time-to-live) in minutes for new items.

If provided, new items will expire after this many minutes after their last access. The expiration timer refreshes on both read and write operations. Defaults to None (no expiration).

sweep_interval_minutes instance-attribute

sweep_interval_minutes: Optional[int]

Interval in minutes between TTL sweep operations.

If provided, the store will periodically delete expired items based on TTL. Defaults to None (no sweeping).

IndexConfig

Bases: TypedDict

Configuration for indexing documents for semantic search in the store.

If not provided to the store, the store will not support vector search. In that case, all index arguments to put() and aput() operations will be ignored.

dims instance-attribute

dims: int

Number of dimensions in the embedding vectors.

Common embedding models have the following dimensions
  • openai:text-embedding-3-large: 3072
  • openai:text-embedding-3-small: 1536
  • openai:text-embedding-ada-002: 1536
  • cohere:embed-english-v3.0: 1024
  • cohere:embed-english-light-v3.0: 384
  • cohere:embed-multilingual-v3.0: 1024
  • cohere:embed-multilingual-light-v3.0: 384

embed instance-attribute

embed: Union[
    Embeddings, EmbeddingsFunc, AEmbeddingsFunc, str
]

Optional function to generate embeddings from text.

Can be specified in three ways
  1. A LangChain Embeddings instance
  2. A synchronous embedding function (EmbeddingsFunc)
  3. An asynchronous embedding function (AEmbeddingsFunc)
  4. A provider string (e.g., "openai:text-embedding-3-small")
Examples

Using LangChain's initialization with InMemoryStore:

from langchain.embeddings import init_embeddings
from langgraph.store.memory import InMemoryStore

store = InMemoryStore(
    index={
        "dims": 1536,
        "embed": init_embeddings("openai:text-embedding-3-small")
    }
)

Using a custom embedding function with InMemoryStore:

from openai import OpenAI
from langgraph.store.memory import InMemoryStore

client = OpenAI()

def embed_texts(texts: list[str]) -> list[list[float]]:
    response = client.embeddings.create(
        model="text-embedding-3-small",
        input=texts
    )
    return [e.embedding for e in response.data]

store = InMemoryStore(
    index={
        "dims": 1536,
        "embed": embed_texts
    }
)

Using an asynchronous embedding function with InMemoryStore:

from openai import AsyncOpenAI
from langgraph.store.memory import InMemoryStore

client = AsyncOpenAI()

async def aembed_texts(texts: list[str]) -> list[list[float]]:
    response = await client.embeddings.create(
        model="text-embedding-3-small",
        input=texts
    )
    return [e.embedding for e in response.data]

store = InMemoryStore(
    index={
        "dims": 1536,
        "embed": aembed_texts
    }
)

fields instance-attribute

fields: Optional[list[str]]

Fields to extract text from for embedding generation.

Controls which parts of stored items are embedded for semantic search. Follows JSON path syntax:

- ["$"]: Embeds the entire JSON object as one vector  (default)
- ["field1", "field2"]: Embeds specific top-level fields
- ["parent.child"]: Embeds nested fields using dot notation
- ["array[*].field"]: Embeds field from each array element separately
Note

You can always override this behavior when storing an item using the index parameter in the put or aput operations.

Examples
# Embed entire document (default)
fields=["$"]

# Embed specific fields
fields=["text", "summary"]

# Embed nested fields
fields=["metadata.title", "content.body"]

# Embed from arrays
fields=["messages[*].content"]  # Each message content separately
fields=["context[0].text"]      # First context item's text
Note
  • Fields missing from a document are skipped
  • Array notation creates separate embeddings for each element
  • Complex nested paths are supported (e.g., "a.b[*].c.d")

BaseStore

Bases: ABC

Abstract base class for persistent key-value stores.

Stores enable persistence and memory that can be shared across threads, scoped to user IDs, assistant IDs, or other arbitrary namespaces. Some implementations may support semantic search capabilities through an optional index configuration.

Note

Semantic search capabilities vary by implementation and are typically disabled by default. Stores that support this feature can be configured by providing an index configuration at creation time. Without this configuration, semantic search is disabled and any index arguments to storage operations will have no effect.

Similarly, TTL (time-to-live) support is disabled by default. Subclasses must explicitly set supports_ttl = True to enable this feature.

batch abstractmethod

batch(ops: Iterable[Op]) -> list[Result]

Execute multiple operations synchronously in a single batch.

Parameters:

  • ops (Iterable[Op]) –

    An iterable of operations to execute.

Returns:

  • list[Result]

    A list of results, where each result corresponds to an operation in the input.

  • list[Result]

    The order of results matches the order of input operations.

abatch abstractmethod async

abatch(ops: Iterable[Op]) -> list[Result]

Execute multiple operations asynchronously in a single batch.

Parameters:

  • ops (Iterable[Op]) –

    An iterable of operations to execute.

Returns:

  • list[Result]

    A list of results, where each result corresponds to an operation in the input.

  • list[Result]

    The order of results matches the order of input operations.

get

get(
    namespace: tuple[str, ...],
    key: str,
    *,
    refresh_ttl: Optional[bool] = None
) -> Optional[Item]

Retrieve a single item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned item. If None (default), uses the store's default refresh_ttl setting. If no TTL is specified, this argument is ignored.

Returns:

  • Optional[Item]

    The retrieved item or None if not found.

search

search(
    namespace_prefix: tuple[str, ...],
    /,
    *,
    query: Optional[str] = None,
    filter: Optional[dict[str, Any]] = None,
    limit: int = 10,
    offset: int = 0,
    refresh_ttl: Optional[bool] = None,
) -> list[SearchItem]

Search for items within a namespace prefix.

Parameters:

  • namespace_prefix (tuple[str, ...]) –

    Hierarchical path prefix to search within.

  • query (Optional[str], default: None ) –

    Optional query for natural language search.

  • filter (Optional[dict[str, Any]], default: None ) –

    Key-value pairs to filter results.

  • limit (int, default: 10 ) –

    Maximum number of items to return.

  • offset (int, default: 0 ) –

    Number of items to skip before returning results.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned items. If no TTL is specified, this argument is ignored.

Returns:

  • list[SearchItem]

    List of items matching the search criteria.

Examples

Basic filtering:

# Search for documents with specific metadata
results = store.search(
    ("docs",),
    filter={"type": "article", "status": "published"}
)

Natural language search (requires vector store implementation):

# Initialize store with embedding configuration
store = YourStore( # e.g., InMemoryStore, AsyncPostgresStore
    index={
        "dims": 1536,  # embedding dimensions
        "embed": your_embedding_function,  # function to create embeddings
        "fields": ["text"]  # fields to embed. Defaults to ["$"]
    }
)

# Search for semantically similar documents
results = store.search(
    ("docs",),
    query="machine learning applications in healthcare",
    filter={"type": "research_paper"},
    limit=5
)

Note: Natural language search support depends on your store implementation and requires proper embedding configuration.

put

put(
    namespace: tuple[str, ...],
    key: str,
    value: dict[str, Any],
    index: Optional[
        Union[Literal[False], list[str]]
    ] = None,
    *,
    ttl: Union[Optional[float], NotProvided] = NOT_PROVIDED
) -> None

Store or update an item in the store.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item, represented as a tuple of strings. Example: ("documents", "user123")

  • key (str) –

    Unique identifier within the namespace. Together with namespace forms the complete path to the item.

  • value (dict[str, Any]) –

    Dictionary containing the item's data. Must contain string keys and JSON-serializable values.

  • index (Optional[Union[Literal[False], list[str]]], default: None ) –

    Controls how the item's fields are indexed for search:

    • None (default): Use fields you configured when creating the store (if any) If you do not initialize the store with indexing capabilities, the index parameter will be ignored
    • False: Disable indexing for this item
    • list[str]: List of field paths to index, supporting:
      • Nested fields: "metadata.title"
      • Array access: "chapters[*].content" (each indexed separately)
      • Specific indices: "authors[0].name"
  • ttl (Union[Optional[float], NotProvided], default: NOT_PROVIDED ) –

    Time to live in minutes. Support for this argument depends on your store adapter. If specified, the item will expire after this many minutes from when it was last accessed. None means no expiration. Expired runs will be deleted opportunistically. By default, the expiration timer refreshes on both read operations (get/search) and write operations (put/update), whenever the item is included in the operation.

Note

Indexing support depends on your store implementation. If you do not initialize the store with indexing capabilities, the index parameter will be ignored.

Similarly, TTL support depends on the specific store implementation. Some implementations may not support expiration of items.

Examples

Store item. Indexing depends on how you configure the store.

store.put(("docs",), "report", {"memory": "Will likes ai"})

Do not index item for semantic search. Still accessible through get() and search() operations but won't have a vector representation.

store.put(("docs",), "report", {"memory": "Will likes ai"}, index=False)

Index specific fields for search.

store.put(("docs",), "report", {"memory": "Will likes ai"}, index=["memory"])

delete

delete(namespace: tuple[str, ...], key: str) -> None

Delete an item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

list_namespaces

list_namespaces(
    *,
    prefix: Optional[NamespacePath] = None,
    suffix: Optional[NamespacePath] = None,
    max_depth: Optional[int] = None,
    limit: int = 100,
    offset: int = 0
) -> list[tuple[str, ...]]

List and filter namespaces in the store.

Used to explore the organization of data, find specific collections, or navigate the namespace hierarchy.

Parameters:

  • prefix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that start with this path.

  • suffix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that end with this path.

  • max_depth (Optional[int], default: None ) –

    Return namespaces up to this depth in the hierarchy. Namespaces deeper than this level will be truncated.

  • limit (int, default: 100 ) –

    Maximum number of namespaces to return (default 100).

  • offset (int, default: 0 ) –

    Number of namespaces to skip for pagination (default 0).

Returns:

  • list[tuple[str, ...]]

    List[Tuple[str, ...]]: A list of namespace tuples that match the criteria.

  • list[tuple[str, ...]]

    Each tuple represents a full namespace path up to max_depth.

???+ example "Examples": Setting max_depth=3. Given the namespaces:

# Example if you have the following namespaces:
# ("a", "b", "c")
# ("a", "b", "d", "e")
# ("a", "b", "d", "i")
# ("a", "b", "f")
# ("a", "c", "f")
store.list_namespaces(prefix=("a", "b"), max_depth=3)
# [("a", "b", "c"), ("a", "b", "d"), ("a", "b", "f")]

aget async

aget(
    namespace: tuple[str, ...],
    key: str,
    *,
    refresh_ttl: Optional[bool] = None
) -> Optional[Item]

Asynchronously retrieve a single item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

Returns:

  • Optional[Item]

    The retrieved item or None if not found.

asearch async

asearch(
    namespace_prefix: tuple[str, ...],
    /,
    *,
    query: Optional[str] = None,
    filter: Optional[dict[str, Any]] = None,
    limit: int = 10,
    offset: int = 0,
    refresh_ttl: Optional[bool] = None,
) -> list[SearchItem]

Asynchronously search for items within a namespace prefix.

Parameters:

  • namespace_prefix (tuple[str, ...]) –

    Hierarchical path prefix to search within.

  • query (Optional[str], default: None ) –

    Optional query for natural language search.

  • filter (Optional[dict[str, Any]], default: None ) –

    Key-value pairs to filter results.

  • limit (int, default: 10 ) –

    Maximum number of items to return.

  • offset (int, default: 0 ) –

    Number of items to skip before returning results.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned items. If None (default), uses the store's TTLConfig.refresh_default setting. If TTLConfig is not provided or no TTL is specified, this argument is ignored.

Returns:

  • list[SearchItem]

    List of items matching the search criteria.

Examples

Basic filtering:

# Search for documents with specific metadata
results = await store.asearch(
    ("docs",),
    filter={"type": "article", "status": "published"}
)

Natural language search (requires vector store implementation):

# Initialize store with embedding configuration
store = YourStore( # e.g., InMemoryStore, AsyncPostgresStore
    index={
        "dims": 1536,  # embedding dimensions
        "embed": your_embedding_function,  # function to create embeddings
        "fields": ["text"]  # fields to embed
    }
)

# Search for semantically similar documents
results = await store.asearch(
    ("docs",),
    query="machine learning applications in healthcare",
    filter={"type": "research_paper"},
    limit=5
)

Note: Natural language search support depends on your store implementation and requires proper embedding configuration.

aput async

aput(
    namespace: tuple[str, ...],
    key: str,
    value: dict[str, Any],
    index: Optional[
        Union[Literal[False], list[str]]
    ] = None,
    *,
    ttl: Union[Optional[float], NotProvided] = NOT_PROVIDED
) -> None

Asynchronously store or update an item in the store.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item, represented as a tuple of strings. Example: ("documents", "user123")

  • key (str) –

    Unique identifier within the namespace. Together with namespace forms the complete path to the item.

  • value (dict[str, Any]) –

    Dictionary containing the item's data. Must contain string keys and JSON-serializable values.

  • index (Optional[Union[Literal[False], list[str]]], default: None ) –

    Controls how the item's fields are indexed for search:

    • None (default): Use fields you configured when creating the store (if any) If you do not initialize the store with indexing capabilities, the index parameter will be ignored
    • False: Disable indexing for this item
    • list[str]: List of field paths to index, supporting:
      • Nested fields: "metadata.title"
      • Array access: "chapters[*].content" (each indexed separately)
      • Specific indices: "authors[0].name"
  • ttl (Union[Optional[float], NotProvided], default: NOT_PROVIDED ) –

    Time to live in minutes. Support for this argument depends on your store adapter. If specified, the item will expire after this many minutes from when it was last accessed. None means no expiration. Expired runs will be deleted opportunistically. By default, the expiration timer refreshes on both read operations (get/search) and write operations (put/update), whenever the item is included in the operation.

Note

Indexing support depends on your store implementation. If you do not initialize the store with indexing capabilities, the index parameter will be ignored.

Similarly, TTL support depends on the specific store implementation. Some implementations may not support expiration of items.

Examples

Store item. Indexing depends on how you configure the store.

await store.aput(("docs",), "report", {"memory": "Will likes ai"})

Do not index item for semantic search. Still accessible through get() and search() operations but won't have a vector representation.

await store.aput(("docs",), "report", {"memory": "Will likes ai"}, index=False)

Index specific fields for search (if store configured to index items):

await store.aput(
    ("docs",),
    "report",
    {
        "memory": "Will likes ai",
        "context": [{"content": "..."}, {"content": "..."}]
    },
    index=["memory", "context[*].content"]
)

adelete async

adelete(namespace: tuple[str, ...], key: str) -> None

Asynchronously delete an item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

alist_namespaces async

alist_namespaces(
    *,
    prefix: Optional[NamespacePath] = None,
    suffix: Optional[NamespacePath] = None,
    max_depth: Optional[int] = None,
    limit: int = 100,
    offset: int = 0
) -> list[tuple[str, ...]]

List and filter namespaces in the store asynchronously.

Used to explore the organization of data, find specific collections, or navigate the namespace hierarchy.

Parameters:

  • prefix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that start with this path.

  • suffix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that end with this path.

  • max_depth (Optional[int], default: None ) –

    Return namespaces up to this depth in the hierarchy. Namespaces deeper than this level will be truncated to this depth.

  • limit (int, default: 100 ) –

    Maximum number of namespaces to return (default 100).

  • offset (int, default: 0 ) –

    Number of namespaces to skip for pagination (default 0).

Returns:

  • list[tuple[str, ...]]

    List[Tuple[str, ...]]: A list of namespace tuples that match the criteria.

  • list[tuple[str, ...]]

    Each tuple represents a full namespace path up to max_depth.

Examples

Setting max_depth=3 with existing namespaces:

# Given the following namespaces:
# ("a", "b", "c")
# ("a", "b", "d", "e")
# ("a", "b", "d", "i")
# ("a", "b", "f")
# ("a", "c", "f")

await store.alist_namespaces(prefix=("a", "b"), max_depth=3)
# Returns: [("a", "b", "c"), ("a", "b", "d"), ("a", "b", "f")]

ensure_embeddings

ensure_embeddings(
    embed: Union[
        Embeddings,
        EmbeddingsFunc,
        AEmbeddingsFunc,
        str,
        None,
    ],
) -> Embeddings

Ensure that an embedding function conforms to LangChain's Embeddings interface.

This function wraps arbitrary embedding functions to make them compatible with LangChain's Embeddings interface. It handles both synchronous and asynchronous functions.

Parameters:

  • embed (Union[Embeddings, EmbeddingsFunc, AEmbeddingsFunc, str, None]) –

    Either an existing Embeddings instance, or a function that converts text to embeddings. If the function is async, it will be used for both sync and async operations.

Returns:

  • Embeddings

    An Embeddings instance that wraps the provided function(s).

Examples

Wrap a synchronous embedding function:

def my_embed_fn(texts):
    return [[0.1, 0.2] for _ in texts]

embeddings = ensure_embeddings(my_embed_fn)
result = embeddings.embed_query("hello")  # Returns [0.1, 0.2]

Wrap an asynchronous embedding function:

async def my_async_fn(texts):
    return [[0.1, 0.2] for _ in texts]

embeddings = ensure_embeddings(my_async_fn)
result = await embeddings.aembed_query("hello")  # Returns [0.1, 0.2]

Initialize embeddings using a provider string:

# Requires langchain>=0.3.9 and langgraph-checkpoint>=2.0.11
embeddings = ensure_embeddings("openai:text-embedding-3-small")
result = embeddings.embed_query("hello")

get_text_at_path

get_text_at_path(
    obj: Any, path: Union[str, list[str]]
) -> list[str]

Extract text from an object using a path expression or pre-tokenized path.

Parameters:

  • obj (Any) –

    The object to extract text from

  • path (Union[str, list[str]]) –

    Either a path string or pre-tokenized path list.

Path types handled

  • Simple paths: "field1.field2"
  • Array indexing: "[0]", "[*]", "[-1]"
  • Wildcards: "*"
  • Multi-field selection: "{field1,field2}"
  • Nested paths in multi-field: "{field1,nested.field2}"

tokenize_path

tokenize_path(path: str) -> list[str]

Tokenize a path into components.

Types handled

  • Simple paths: "field1.field2"
  • Array indexing: "[0]", "[*]", "[-1]"
  • Wildcards: "*"
  • Multi-field selection: "{field1,field2}"

AsyncPostgresStore

Bases: AsyncBatchedBaseStore, BasePostgresStore[Conn]

Asynchronous Postgres-backed store with optional vector search using pgvector.

Examples

Basic setup and usage:

from langgraph.store.postgres import AsyncPostgresStore

conn_string = "postgresql://user:pass@localhost:5432/dbname"

async with AsyncPostgresStore.from_conn_string(conn_string) as store:
    await store.setup()  # Run migrations. Done once

    # Store and retrieve data
    await store.aput(("users", "123"), "prefs", {"theme": "dark"})
    item = await store.aget(("users", "123"), "prefs")

Vector search using LangChain embeddings:

from langchain.embeddings import init_embeddings
from langgraph.store.postgres import AsyncPostgresStore

conn_string = "postgresql://user:pass@localhost:5432/dbname"

async with AsyncPostgresStore.from_conn_string(
    conn_string,
    index={
        "dims": 1536,
        "embed": init_embeddings("openai:text-embedding-3-small"),
        "fields": ["text"]  # specify which fields to embed. Default is the whole serialized value
    }
) as store:
    await store.setup()  # Run migrations. Done once

    # Store documents
    await store.aput(("docs",), "doc1", {"text": "Python tutorial"})
    await store.aput(("docs",), "doc2", {"text": "TypeScript guide"})
    await store.aput(("docs",), "doc3", {"text": "Other guide"}, index=False)  # don't index

    # Search by similarity
    results = await store.asearch(("docs",), query="programming guides", limit=2)

Using connection pooling for better performance:

from langgraph.store.postgres import AsyncPostgresStore, PoolConfig

conn_string = "postgresql://user:pass@localhost:5432/dbname"

async with AsyncPostgresStore.from_conn_string(
    conn_string,
    pool_config=PoolConfig(
        min_size=5,
        max_size=20
    )
) as store:
    await store.setup()  # Run migrations. Done once
    # Use store with connection pooling...

Warning

Make sure to: 1. Call setup() before first use to create necessary tables and indexes 2. Have the pgvector extension available to use vector search 3. Use Python 3.10+ for async functionality

Note

Semantic search is disabled by default. You can enable it by providing an index configuration when creating the store. Without this configuration, all index arguments passed to put or aput will have no effect.

Note

If you provide a TTL configuration, you must explicitly call start_ttl_sweeper() to begin the background task that removes expired items. Call stop_ttl_sweeper() to properly clean up resources when you're done with the store.

from_conn_string async classmethod

from_conn_string(
    conn_string: str,
    *,
    pipeline: bool = False,
    pool_config: Optional[PoolConfig] = None,
    index: Optional[PostgresIndexConfig] = None,
    ttl: Optional[TTLConfig] = None
) -> AsyncIterator[AsyncPostgresStore]

Create a new AsyncPostgresStore instance from a connection string.

Parameters:

  • conn_string (str) –

    The Postgres connection info string.

  • pipeline (bool, default: False ) –

    Whether to use AsyncPipeline (only for single connections)

  • pool_config (Optional[PoolConfig], default: None ) –

    Configuration for the connection pool. If provided, will create a connection pool and use it instead of a single connection. This overrides the pipeline argument.

  • index (Optional[PostgresIndexConfig], default: None ) –

    The embedding config.

Returns:

  • AsyncPostgresStore ( AsyncIterator[AsyncPostgresStore] ) –

    A new AsyncPostgresStore instance.

setup async

setup() -> None

Set up the store database asynchronously.

This method creates the necessary tables in the Postgres database if they don't already exist and runs database migrations. It MUST be called directly by the user the first time the store is used.

sweep_ttl async

sweep_ttl() -> int

Delete expired store items based on TTL.

Returns:

  • int ( int ) –

    The number of deleted items.

start_ttl_sweeper async

start_ttl_sweeper(
    sweep_interval_minutes: Optional[int] = None,
) -> Task[None]

Periodically delete expired store items based on TTL.

Returns:

  • Task[None]

    Task that can be awaited or cancelled.

stop_ttl_sweeper async

stop_ttl_sweeper(timeout: Optional[float] = None) -> bool

Stop the TTL sweeper task if it's running.

Parameters:

  • timeout (Optional[float], default: None ) –

    Maximum time to wait for the task to stop, in seconds. If None, wait indefinitely.

Returns:

  • bool ( bool ) –

    True if the task was successfully stopped or wasn't running, False if the timeout was reached before the task stopped.

PostgresStore

Bases: BaseStore, BasePostgresStore[Conn]

Postgres-backed store with optional vector search using pgvector.

Examples

Basic setup and usage:

from langgraph.store.postgres import PostgresStore
from psycopg import Connection

conn_string = "postgresql://user:pass@localhost:5432/dbname"

# Using direct connection
with Connection.connect(conn_string) as conn:
    store = PostgresStore(conn)
    store.setup() # Run migrations. Done once

    # Store and retrieve data
    store.put(("users", "123"), "prefs", {"theme": "dark"})
    item = store.get(("users", "123"), "prefs")

Or using the convenient from_conn_string helper:

from langgraph.store.postgres import PostgresStore

conn_string = "postgresql://user:pass@localhost:5432/dbname"

with PostgresStore.from_conn_string(conn_string) as store:
    store.setup()

    # Store and retrieve data
    store.put(("users", "123"), "prefs", {"theme": "dark"})
    item = store.get(("users", "123"), "prefs")

Vector search using LangChain embeddings:

from langchain.embeddings import init_embeddings
from langgraph.store.postgres import PostgresStore

conn_string = "postgresql://user:pass@localhost:5432/dbname"

with PostgresStore.from_conn_string(
    conn_string,
    index={
        "dims": 1536,
        "embed": init_embeddings("openai:text-embedding-3-small"),
        "fields": ["text"]  # specify which fields to embed. Default is the whole serialized value
    }
) as store:
    store.setup() # Do this once to run migrations

    # Store documents
    store.put(("docs",), "doc1", {"text": "Python tutorial"})
    store.put(("docs",), "doc2", {"text": "TypeScript guide"})
    store.put(("docs",), "doc2", {"text": "Other guide"}, index=False) # don't index

    # Search by similarity
    results = store.search(("docs",), query="programming guides", limit=2)

Note

Semantic search is disabled by default. You can enable it by providing an index configuration when creating the store. Without this configuration, all index arguments passed to put or aputwill have no effect.

Warning

Make sure to call setup() before first use to create necessary tables and indexes. The pgvector extension must be available to use vector search.

Note

If you provide a TTL configuration, you must explicitly call start_ttl_sweeper() to begin the background thread that removes expired items. Call stop_ttl_sweeper() to properly clean up resources when you're done with the store.

get

get(
    namespace: tuple[str, ...],
    key: str,
    *,
    refresh_ttl: Optional[bool] = None
) -> Optional[Item]

Retrieve a single item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned item. If None (default), uses the store's default refresh_ttl setting. If no TTL is specified, this argument is ignored.

Returns:

  • Optional[Item]

    The retrieved item or None if not found.

search

search(
    namespace_prefix: tuple[str, ...],
    /,
    *,
    query: Optional[str] = None,
    filter: Optional[dict[str, Any]] = None,
    limit: int = 10,
    offset: int = 0,
    refresh_ttl: Optional[bool] = None,
) -> list[SearchItem]

Search for items within a namespace prefix.

Parameters:

  • namespace_prefix (tuple[str, ...]) –

    Hierarchical path prefix to search within.

  • query (Optional[str], default: None ) –

    Optional query for natural language search.

  • filter (Optional[dict[str, Any]], default: None ) –

    Key-value pairs to filter results.

  • limit (int, default: 10 ) –

    Maximum number of items to return.

  • offset (int, default: 0 ) –

    Number of items to skip before returning results.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned items. If no TTL is specified, this argument is ignored.

Returns:

  • list[SearchItem]

    List of items matching the search criteria.

Examples

Basic filtering:

# Search for documents with specific metadata
results = store.search(
    ("docs",),
    filter={"type": "article", "status": "published"}
)

Natural language search (requires vector store implementation):

# Initialize store with embedding configuration
store = YourStore( # e.g., InMemoryStore, AsyncPostgresStore
    index={
        "dims": 1536,  # embedding dimensions
        "embed": your_embedding_function,  # function to create embeddings
        "fields": ["text"]  # fields to embed. Defaults to ["$"]
    }
)

# Search for semantically similar documents
results = store.search(
    ("docs",),
    query="machine learning applications in healthcare",
    filter={"type": "research_paper"},
    limit=5
)

Note: Natural language search support depends on your store implementation and requires proper embedding configuration.

put

put(
    namespace: tuple[str, ...],
    key: str,
    value: dict[str, Any],
    index: Optional[
        Union[Literal[False], list[str]]
    ] = None,
    *,
    ttl: Union[Optional[float], NotProvided] = NOT_PROVIDED
) -> None

Store or update an item in the store.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item, represented as a tuple of strings. Example: ("documents", "user123")

  • key (str) –

    Unique identifier within the namespace. Together with namespace forms the complete path to the item.

  • value (dict[str, Any]) –

    Dictionary containing the item's data. Must contain string keys and JSON-serializable values.

  • index (Optional[Union[Literal[False], list[str]]], default: None ) –

    Controls how the item's fields are indexed for search:

    • None (default): Use fields you configured when creating the store (if any) If you do not initialize the store with indexing capabilities, the index parameter will be ignored
    • False: Disable indexing for this item
    • list[str]: List of field paths to index, supporting:
      • Nested fields: "metadata.title"
      • Array access: "chapters[*].content" (each indexed separately)
      • Specific indices: "authors[0].name"
  • ttl (Union[Optional[float], NotProvided], default: NOT_PROVIDED ) –

    Time to live in minutes. Support for this argument depends on your store adapter. If specified, the item will expire after this many minutes from when it was last accessed. None means no expiration. Expired runs will be deleted opportunistically. By default, the expiration timer refreshes on both read operations (get/search) and write operations (put/update), whenever the item is included in the operation.

Note

Indexing support depends on your store implementation. If you do not initialize the store with indexing capabilities, the index parameter will be ignored.

Similarly, TTL support depends on the specific store implementation. Some implementations may not support expiration of items.

Examples

Store item. Indexing depends on how you configure the store.

store.put(("docs",), "report", {"memory": "Will likes ai"})

Do not index item for semantic search. Still accessible through get() and search() operations but won't have a vector representation.

store.put(("docs",), "report", {"memory": "Will likes ai"}, index=False)

Index specific fields for search.

store.put(("docs",), "report", {"memory": "Will likes ai"}, index=["memory"])

delete

delete(namespace: tuple[str, ...], key: str) -> None

Delete an item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

list_namespaces

list_namespaces(
    *,
    prefix: Optional[NamespacePath] = None,
    suffix: Optional[NamespacePath] = None,
    max_depth: Optional[int] = None,
    limit: int = 100,
    offset: int = 0
) -> list[tuple[str, ...]]

List and filter namespaces in the store.

Used to explore the organization of data, find specific collections, or navigate the namespace hierarchy.

Parameters:

  • prefix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that start with this path.

  • suffix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that end with this path.

  • max_depth (Optional[int], default: None ) –

    Return namespaces up to this depth in the hierarchy. Namespaces deeper than this level will be truncated.

  • limit (int, default: 100 ) –

    Maximum number of namespaces to return (default 100).

  • offset (int, default: 0 ) –

    Number of namespaces to skip for pagination (default 0).

Returns:

  • list[tuple[str, ...]]

    List[Tuple[str, ...]]: A list of namespace tuples that match the criteria.

  • list[tuple[str, ...]]

    Each tuple represents a full namespace path up to max_depth.

???+ example "Examples": Setting max_depth=3. Given the namespaces:

# Example if you have the following namespaces:
# ("a", "b", "c")
# ("a", "b", "d", "e")
# ("a", "b", "d", "i")
# ("a", "b", "f")
# ("a", "c", "f")
store.list_namespaces(prefix=("a", "b"), max_depth=3)
# [("a", "b", "c"), ("a", "b", "d"), ("a", "b", "f")]

aget async

aget(
    namespace: tuple[str, ...],
    key: str,
    *,
    refresh_ttl: Optional[bool] = None
) -> Optional[Item]

Asynchronously retrieve a single item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

Returns:

  • Optional[Item]

    The retrieved item or None if not found.

asearch async

asearch(
    namespace_prefix: tuple[str, ...],
    /,
    *,
    query: Optional[str] = None,
    filter: Optional[dict[str, Any]] = None,
    limit: int = 10,
    offset: int = 0,
    refresh_ttl: Optional[bool] = None,
) -> list[SearchItem]

Asynchronously search for items within a namespace prefix.

Parameters:

  • namespace_prefix (tuple[str, ...]) –

    Hierarchical path prefix to search within.

  • query (Optional[str], default: None ) –

    Optional query for natural language search.

  • filter (Optional[dict[str, Any]], default: None ) –

    Key-value pairs to filter results.

  • limit (int, default: 10 ) –

    Maximum number of items to return.

  • offset (int, default: 0 ) –

    Number of items to skip before returning results.

  • refresh_ttl (Optional[bool], default: None ) –

    Whether to refresh TTLs for the returned items. If None (default), uses the store's TTLConfig.refresh_default setting. If TTLConfig is not provided or no TTL is specified, this argument is ignored.

Returns:

  • list[SearchItem]

    List of items matching the search criteria.

Examples

Basic filtering:

# Search for documents with specific metadata
results = await store.asearch(
    ("docs",),
    filter={"type": "article", "status": "published"}
)

Natural language search (requires vector store implementation):

# Initialize store with embedding configuration
store = YourStore( # e.g., InMemoryStore, AsyncPostgresStore
    index={
        "dims": 1536,  # embedding dimensions
        "embed": your_embedding_function,  # function to create embeddings
        "fields": ["text"]  # fields to embed
    }
)

# Search for semantically similar documents
results = await store.asearch(
    ("docs",),
    query="machine learning applications in healthcare",
    filter={"type": "research_paper"},
    limit=5
)

Note: Natural language search support depends on your store implementation and requires proper embedding configuration.

aput async

aput(
    namespace: tuple[str, ...],
    key: str,
    value: dict[str, Any],
    index: Optional[
        Union[Literal[False], list[str]]
    ] = None,
    *,
    ttl: Union[Optional[float], NotProvided] = NOT_PROVIDED
) -> None

Asynchronously store or update an item in the store.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item, represented as a tuple of strings. Example: ("documents", "user123")

  • key (str) –

    Unique identifier within the namespace. Together with namespace forms the complete path to the item.

  • value (dict[str, Any]) –

    Dictionary containing the item's data. Must contain string keys and JSON-serializable values.

  • index (Optional[Union[Literal[False], list[str]]], default: None ) –

    Controls how the item's fields are indexed for search:

    • None (default): Use fields you configured when creating the store (if any) If you do not initialize the store with indexing capabilities, the index parameter will be ignored
    • False: Disable indexing for this item
    • list[str]: List of field paths to index, supporting:
      • Nested fields: "metadata.title"
      • Array access: "chapters[*].content" (each indexed separately)
      • Specific indices: "authors[0].name"
  • ttl (Union[Optional[float], NotProvided], default: NOT_PROVIDED ) –

    Time to live in minutes. Support for this argument depends on your store adapter. If specified, the item will expire after this many minutes from when it was last accessed. None means no expiration. Expired runs will be deleted opportunistically. By default, the expiration timer refreshes on both read operations (get/search) and write operations (put/update), whenever the item is included in the operation.

Note

Indexing support depends on your store implementation. If you do not initialize the store with indexing capabilities, the index parameter will be ignored.

Similarly, TTL support depends on the specific store implementation. Some implementations may not support expiration of items.

Examples

Store item. Indexing depends on how you configure the store.

await store.aput(("docs",), "report", {"memory": "Will likes ai"})

Do not index item for semantic search. Still accessible through get() and search() operations but won't have a vector representation.

await store.aput(("docs",), "report", {"memory": "Will likes ai"}, index=False)

Index specific fields for search (if store configured to index items):

await store.aput(
    ("docs",),
    "report",
    {
        "memory": "Will likes ai",
        "context": [{"content": "..."}, {"content": "..."}]
    },
    index=["memory", "context[*].content"]
)

adelete async

adelete(namespace: tuple[str, ...], key: str) -> None

Asynchronously delete an item.

Parameters:

  • namespace (tuple[str, ...]) –

    Hierarchical path for the item.

  • key (str) –

    Unique identifier within the namespace.

alist_namespaces async

alist_namespaces(
    *,
    prefix: Optional[NamespacePath] = None,
    suffix: Optional[NamespacePath] = None,
    max_depth: Optional[int] = None,
    limit: int = 100,
    offset: int = 0
) -> list[tuple[str, ...]]

List and filter namespaces in the store asynchronously.

Used to explore the organization of data, find specific collections, or navigate the namespace hierarchy.

Parameters:

  • prefix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that start with this path.

  • suffix (Optional[Tuple[str, ...]], default: None ) –

    Filter namespaces that end with this path.

  • max_depth (Optional[int], default: None ) –

    Return namespaces up to this depth in the hierarchy. Namespaces deeper than this level will be truncated to this depth.

  • limit (int, default: 100 ) –

    Maximum number of namespaces to return (default 100).

  • offset (int, default: 0 ) –

    Number of namespaces to skip for pagination (default 0).

Returns:

  • list[tuple[str, ...]]

    List[Tuple[str, ...]]: A list of namespace tuples that match the criteria.

  • list[tuple[str, ...]]

    Each tuple represents a full namespace path up to max_depth.

Examples

Setting max_depth=3 with existing namespaces:

# Given the following namespaces:
# ("a", "b", "c")
# ("a", "b", "d", "e")
# ("a", "b", "d", "i")
# ("a", "b", "f")
# ("a", "c", "f")

await store.alist_namespaces(prefix=("a", "b"), max_depth=3)
# Returns: [("a", "b", "c"), ("a", "b", "d"), ("a", "b", "f")]

from_conn_string classmethod

from_conn_string(
    conn_string: str,
    *,
    pipeline: bool = False,
    pool_config: Optional[PoolConfig] = None,
    index: Optional[PostgresIndexConfig] = None,
    ttl: Optional[TTLConfig] = None
) -> Iterator[PostgresStore]

Create a new PostgresStore instance from a connection string.

Parameters:

  • conn_string (str) –

    The Postgres connection info string.

  • pipeline (bool, default: False ) –

    whether to use Pipeline

  • pool_config (Optional[PoolArgs], default: None ) –

    Configuration for the connection pool. If provided, will create a connection pool and use it instead of a single connection. This overrides the pipeline argument.

  • index (Optional[PostgresIndexConfig], default: None ) –

    The index configuration for the store.

Returns:

  • PostgresStore ( Iterator[PostgresStore] ) –

    A new PostgresStore instance.

sweep_ttl

sweep_ttl() -> int

Delete expired store items based on TTL.

Returns:

  • int ( int ) –

    The number of deleted items.

start_ttl_sweeper

start_ttl_sweeper(
    sweep_interval_minutes: Optional[int] = None,
) -> Future[None]

Periodically delete expired store items based on TTL.

Returns:

  • Future[None]

    Future that can be waited on or cancelled.

stop_ttl_sweeper

stop_ttl_sweeper(timeout: Optional[float] = None) -> bool

Stop the TTL sweeper thread if it's running.

Parameters:

  • timeout (Optional[float], default: None ) –

    Maximum time to wait for the thread to stop, in seconds. If None, wait indefinitely.

Returns:

  • bool ( bool ) –

    True if the thread was successfully stopped or wasn't running, False if the timeout was reached before the thread stopped.

__del__

__del__() -> None

Ensure the TTL sweeper thread is stopped when the object is garbage collected.

setup

setup() -> None

Set up the store database.

This method creates the necessary tables in the Postgres database if they don't already exist and runs database migrations. It MUST be called directly by the user the first time the store is used.

Comments