Skip to content

Prebuilt

create_react_agent

from langgraph.prebuilt import create_react_agent

Creates a graph that works with a chat model that utilizes tool calling.

Parameters:

  • model (LanguageModelLike) –

    The LangChain chat model that supports tool calling.

  • tools (Union[ToolExecutor, Sequence[BaseTool], ToolNode]) –

    A list of tools, a ToolExecutor, or a ToolNode instance.

  • state_schema (Optional[StateSchemaType], default: None ) –

    An optional state schema that defines graph state. Must have messages and is_last_step keys. Defaults to AgentState that defines those two keys.

  • messages_modifier (Optional[MessagesModifier], default: None ) –

    An optional messages modifier. This applies to messages BEFORE they are passed into the LLM.

    Can take a few different forms:

    • SystemMessage: this is added to the beginning of the list of messages.
    • str: This is converted to a SystemMessage and added to the beginning of the list of messages.
    • Callable: This function should take in a list of messages and the output is then passed to the language model.
    • Runnable: This runnable should take in a list of messages and the output is then passed to the language model.

    Warning

    messages_modifier parameter is deprecated as of version 0.1.9 and will be removed in 0.2.0

  • state_modifier (Optional[StateModifier], default: None ) –

    An optional state modifier. This takes full graph state BEFORE the LLM is called and prepares the input to LLM.

    Can take a few different forms:

    • SystemMessage: this is added to the beginning of the list of messages in state["messages"].
    • str: This is converted to a SystemMessage and added to the beginning of the list of messages in state["messages"].
    • Callable: This function should take in full graph state and the output is then passed to the language model.
    • Runnable: This runnable should take in full graph state and the output is then passed to the language model.
  • checkpointer (Optional[BaseCheckpointSaver], default: None ) –

    An optional checkpoint saver object. This is useful for persisting the state of the graph (e.g., as chat memory).

  • interrupt_before (Optional[Sequence[str]], default: None ) –

    An optional list of node names to interrupt before. Should be one of the following: "agent", "tools". This is useful if you want to add a user confirmation or other interrupt before taking an action.

  • interrupt_after (Optional[Sequence[str]], default: None ) –

    An optional list of node names to interrupt after. Should be one of the following: "agent", "tools". This is useful if you want to return directly or run additional processing on an output.

  • debug (bool, default: False ) –

    A flag indicating whether to enable debug mode.

Returns:

  • CompiledGraph

    A compiled LangChain runnable that can be used for chat interactions.

The resulting graph looks like this:

stateDiagram-v2
    [*] --> Start
    Start --> Agent
    Agent --> Tools : continue
    Tools --> Agent
    Agent --> End : end
    End --> [*]

    classDef startClass fill:#ffdfba;
    classDef endClass fill:#baffc9;
    classDef otherClass fill:#fad7de;

    class Start startClass
    class End endClass
    class Agent,Tools otherClass

The "agent" node calls the language model with the messages list (after applying the messages modifier). If the resulting AIMessage contains tool_calls, the graph will then call the "tools". The "tools" node executes the tools (1 tool per tool_call) and adds the responses to the messages list as ToolMessage objects. The agent node then calls the language model again. The process repeats until no more tool_calls are present in the response. The agent then returns the full list of messages as a dictionary containing the key "messages".

    sequenceDiagram
        participant U as User
        participant A as Agent (LLM)
        participant T as Tools
        U->>A: Initial input
        Note over A: Messages modifier + LLM
        loop while tool_calls present
            A->>T: Execute tools
            T-->>A: ToolMessage for each tool_calls
        end
        A->>U: Return final state

Examples:

Use with a simple tool:

>>> from datetime import datetime
>>> from langchain_core.tools import tool
>>> from langchain_openai import ChatOpenAI
>>> from langgraph.prebuilt import create_react_agent
>>>
>>> @tool
... def check_weather(location: str, at_time: datetime | None = None) -> float:
...     '''Return the weather forecast for the specified location.'''
...     return f"It's always sunny in {location}"
>>>
>>> tools = [check_weather]
>>> model = ChatOpenAI(model="gpt-4o")
>>> graph = create_react_agent(model, tools=tools)
>>> inputs = {"messages": [("user", "what is the weather in sf")]}
>>> for s in graph.stream(inputs, stream_mode="values"):
...     message = s["messages"][-1]
...     if isinstance(message, tuple):
...         print(message)
...     else:
...         message.pretty_print()
('user', 'what is the weather in sf')
================================== Ai Message ==================================
Tool Calls:
check_weather (call_LUzFvKJRuaWQPeXvBOzwhQOu)
Call ID: call_LUzFvKJRuaWQPeXvBOzwhQOu
Args:
    location: San Francisco
================================= Tool Message =================================
Name: check_weather
It's always sunny in San Francisco
================================== Ai Message ==================================
The weather in San Francisco is sunny.
Add a system prompt for the LLM:

>>> system_prompt = "You are a helpful bot named Fred."
>>> graph = create_react_agent(model, tools, state_modifier=system_prompt)
>>> inputs = {"messages": [("user", "What's your name? And what's the weather in SF?")]}
>>> for s in graph.stream(inputs, stream_mode="values"):
...     message = s["messages"][-1]
...     if isinstance(message, tuple):
...         print(message)
...     else:
...         message.pretty_print()
('user', "What's your name? And what's the weather in SF?")
================================== Ai Message ==================================
Hi, my name is Fred. Let me check the weather in San Francisco for you.
Tool Calls:
check_weather (call_lqhj4O0hXYkW9eknB4S41EXk)
Call ID: call_lqhj4O0hXYkW9eknB4S41EXk
Args:
    location: San Francisco
================================= Tool Message =================================
Name: check_weather
It's always sunny in San Francisco
================================== Ai Message ==================================
The weather in San Francisco is currently sunny. If you need any more details or have other questions, feel free to ask!

Add a more complex prompt for the LLM:

>>> from langchain_core.prompts import ChatPromptTemplate
>>> prompt = ChatPromptTemplate.from_messages([
...     ("system", "You are a helpful bot named Fred."),
...     ("placeholder", "{messages}"),
...     ("user", "Remember, always be polite!"),
... ])
>>> def modify_state_messages(state: AgentState):
...     # You can do more complex modifications here
...     return prompt.invoke({"messages": state["messages"]})
>>>
>>> graph = create_react_agent(model, tools, state_modifier=modify_state_messages)
>>> inputs = {"messages": [("user", "What's your name? And what's the weather in SF?")]}
>>> for s in graph.stream(inputs, stream_mode="values"):
...     message = s["messages"][-1]
...     if isinstance(message, tuple):
...         print(message)
...     else:
...         message.pretty_print()

Add complex prompt with custom graph state:

>>> from typing import TypedDict
>>> prompt = ChatPromptTemplate.from_messages(
...     [
...         ("system", "Today is {today}"),
...         ("placeholder", "{messages}"),
...     ]
... )
>>>
>>> class CustomState(TypedDict):
...     today: str
...     messages: Annotated[list[BaseMessage], add_messages]
...     is_last_step: str
>>>
>>> graph = create_react_agent(model, tools, state_schema=CustomState, state_modifier=prompt)
>>> inputs = {"messages": [("user", "What's today's date? And what's the weather in SF?")], "today": "July 16, 2004"}
>>> for s in graph.stream(inputs, stream_mode="values"):
...     message = s["messages"][-1]
...     if isinstance(message, tuple):
...         print(message)
...     else:
...         message.pretty_print()

Add "chat memory" to the graph:

>>> from langgraph.checkpoint.memory import MemorySaver
>>> graph = create_react_agent(model, tools, checkpointer=MemorySaver())
>>> config = {"configurable": {"thread_id": "thread-1"}}
>>> def print_stream(graph, inputs, config):
...     for s in graph.stream(inputs, config, stream_mode="values"):
...         message = s["messages"][-1]
...         if isinstance(message, tuple):
...             print(message)
...         else:
...             message.pretty_print()
>>> inputs = {"messages": [("user", "What's the weather in SF?")]}
>>> print_stream(graph, inputs, config)
>>> inputs2 = {"messages": [("user", "Cool, so then should i go biking today?")]}
>>> print_stream(graph, inputs2, config)
('user', "What's the weather in SF?")
================================== Ai Message ==================================
Tool Calls:
check_weather (call_ChndaktJxpr6EMPEB5JfOFYc)
Call ID: call_ChndaktJxpr6EMPEB5JfOFYc
Args:
    location: San Francisco
================================= Tool Message =================================
Name: check_weather
It's always sunny in San Francisco
================================== Ai Message ==================================
The weather in San Francisco is sunny. Enjoy your day!
================================ Human Message =================================
Cool, so then should i go biking today?
================================== Ai Message ==================================
Since the weather in San Francisco is sunny, it sounds like a great day for biking! Enjoy your ride!

Add an interrupt to let the user confirm before taking an action:

>>> graph = create_react_agent(
...     model, tools, interrupt_before=["tools"], checkpointer=MemorySaver()
>>> )
>>> config = {"configurable": {"thread_id": "thread-1"}}
>>> def print_stream(graph, inputs, config):
...     for s in graph.stream(inputs, config, stream_mode="values"):
...         message = s["messages"][-1]
...         if isinstance(message, tuple):
...             print(message)
...         else:
...             message.pretty_print()

>>> inputs = {"messages": [("user", "What's the weather in SF?")]}
>>> print_stream(graph, inputs, config)
>>> snapshot = graph.get_state(config)
>>> print("Next step: ", snapshot.next)
>>> print_stream(graph, None, config)

Add a timeout for a given step:

>>> import time
>>> @tool
... def check_weather(location: str, at_time: datetime | None = None) -> float:
...     '''Return the weather forecast for the specified location.'''
...     time.sleep(2)
...     return f"It's always sunny in {location}"
>>>
>>> tools = [check_weather]
>>> graph = create_react_agent(model, tools)
>>> graph.step_timeout = 1 # Seconds
>>> for s in graph.stream({"messages": [("user", "what is the weather in sf")]}):
...     print(s)
TimeoutError: Timed out at step 2
Source code in libs/langgraph/langgraph/prebuilt/chat_agent_executor.py
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
@deprecated_parameter("messages_modifier", "0.1.9", "state_modifier", removal="0.3.0")
def create_react_agent(
    model: LanguageModelLike,
    tools: Union[ToolExecutor, Sequence[BaseTool], ToolNode],
    *,
    state_schema: Optional[StateSchemaType] = None,
    messages_modifier: Optional[MessagesModifier] = None,
    state_modifier: Optional[StateModifier] = None,
    checkpointer: Optional[BaseCheckpointSaver] = None,
    interrupt_before: Optional[Sequence[str]] = None,
    interrupt_after: Optional[Sequence[str]] = None,
    debug: bool = False,
) -> CompiledGraph:
    """Creates a graph that works with a chat model that utilizes tool calling.

    Args:
        model: The `LangChain` chat model that supports tool calling.
        tools: A list of tools, a ToolExecutor, or a ToolNode instance.
        state_schema: An optional state schema that defines graph state.
            Must have `messages` and `is_last_step` keys.
            Defaults to `AgentState` that defines those two keys.
        messages_modifier: An optional
            messages modifier. This applies to messages BEFORE they are passed into the LLM.

            Can take a few different forms:

            - SystemMessage: this is added to the beginning of the list of messages.
            - str: This is converted to a SystemMessage and added to the beginning of the list of messages.
            - Callable: This function should take in a list of messages and the output is then passed to the language model.
            - Runnable: This runnable should take in a list of messages and the output is then passed to the language model.
            !!! Warning
                `messages_modifier` parameter is deprecated as of version 0.1.9 and will be removed in 0.2.0
        state_modifier: An optional
            state modifier. This takes full graph state BEFORE the LLM is called and prepares the input to LLM.

            Can take a few different forms:

            - SystemMessage: this is added to the beginning of the list of messages in state["messages"].
            - str: This is converted to a SystemMessage and added to the beginning of the list of messages in state["messages"].
            - Callable: This function should take in full graph state and the output is then passed to the language model.
            - Runnable: This runnable should take in full graph state and the output is then passed to the language model.
        checkpointer: An optional checkpoint saver object. This is useful for persisting
            the state of the graph (e.g., as chat memory).
        interrupt_before: An optional list of node names to interrupt before.
            Should be one of the following: "agent", "tools".
            This is useful if you want to add a user confirmation or other interrupt before taking an action.
        interrupt_after: An optional list of node names to interrupt after.
            Should be one of the following: "agent", "tools".
            This is useful if you want to return directly or run additional processing on an output.
        debug: A flag indicating whether to enable debug mode.

    Returns:
        A compiled LangChain runnable that can be used for chat interactions.

    The resulting graph looks like this:

    ``` mermaid
    stateDiagram-v2
        [*] --> Start
        Start --> Agent
        Agent --> Tools : continue
        Tools --> Agent
        Agent --> End : end
        End --> [*]

        classDef startClass fill:#ffdfba;
        classDef endClass fill:#baffc9;
        classDef otherClass fill:#fad7de;

        class Start startClass
        class End endClass
        class Agent,Tools otherClass
    ```

    The "agent" node calls the language model with the messages list (after applying the messages modifier).
    If the resulting AIMessage contains `tool_calls`, the graph will then call the ["tools"][toolnode].
    The "tools" node executes the tools (1 tool per `tool_call`) and adds the responses to the messages list
    as `ToolMessage` objects. The agent node then calls the language model again.
    The process repeats until no more `tool_calls` are present in the response.
    The agent then returns the full list of messages as a dictionary containing the key "messages".

    ``` mermaid
        sequenceDiagram
            participant U as User
            participant A as Agent (LLM)
            participant T as Tools
            U->>A: Initial input
            Note over A: Messages modifier + LLM
            loop while tool_calls present
                A->>T: Execute tools
                T-->>A: ToolMessage for each tool_calls
            end
            A->>U: Return final state
    ```

    Examples:
        Use with a simple tool:

        ```pycon
        >>> from datetime import datetime
        >>> from langchain_core.tools import tool
        >>> from langchain_openai import ChatOpenAI
        >>> from langgraph.prebuilt import create_react_agent
        >>>
        >>> @tool
        ... def check_weather(location: str, at_time: datetime | None = None) -> float:
        ...     '''Return the weather forecast for the specified location.'''
        ...     return f"It's always sunny in {location}"
        >>>
        >>> tools = [check_weather]
        >>> model = ChatOpenAI(model="gpt-4o")
        >>> graph = create_react_agent(model, tools=tools)
        >>> inputs = {"messages": [("user", "what is the weather in sf")]}
        >>> for s in graph.stream(inputs, stream_mode="values"):
        ...     message = s["messages"][-1]
        ...     if isinstance(message, tuple):
        ...         print(message)
        ...     else:
        ...         message.pretty_print()
        ('user', 'what is the weather in sf')
        ================================== Ai Message ==================================
        Tool Calls:
        check_weather (call_LUzFvKJRuaWQPeXvBOzwhQOu)
        Call ID: call_LUzFvKJRuaWQPeXvBOzwhQOu
        Args:
            location: San Francisco
        ================================= Tool Message =================================
        Name: check_weather
        It's always sunny in San Francisco
        ================================== Ai Message ==================================
        The weather in San Francisco is sunny.
        ```
        Add a system prompt for the LLM:

        ```pycon
        >>> system_prompt = "You are a helpful bot named Fred."
        >>> graph = create_react_agent(model, tools, state_modifier=system_prompt)
        >>> inputs = {"messages": [("user", "What's your name? And what's the weather in SF?")]}
        >>> for s in graph.stream(inputs, stream_mode="values"):
        ...     message = s["messages"][-1]
        ...     if isinstance(message, tuple):
        ...         print(message)
        ...     else:
        ...         message.pretty_print()
        ('user', "What's your name? And what's the weather in SF?")
        ================================== Ai Message ==================================
        Hi, my name is Fred. Let me check the weather in San Francisco for you.
        Tool Calls:
        check_weather (call_lqhj4O0hXYkW9eknB4S41EXk)
        Call ID: call_lqhj4O0hXYkW9eknB4S41EXk
        Args:
            location: San Francisco
        ================================= Tool Message =================================
        Name: check_weather
        It's always sunny in San Francisco
        ================================== Ai Message ==================================
        The weather in San Francisco is currently sunny. If you need any more details or have other questions, feel free to ask!
        ```

        Add a more complex prompt for the LLM:

        ```pycon
        >>> from langchain_core.prompts import ChatPromptTemplate
        >>> prompt = ChatPromptTemplate.from_messages([
        ...     ("system", "You are a helpful bot named Fred."),
        ...     ("placeholder", "{messages}"),
        ...     ("user", "Remember, always be polite!"),
        ... ])
        >>> def modify_state_messages(state: AgentState):
        ...     # You can do more complex modifications here
        ...     return prompt.invoke({"messages": state["messages"]})
        >>>
        >>> graph = create_react_agent(model, tools, state_modifier=modify_state_messages)
        >>> inputs = {"messages": [("user", "What's your name? And what's the weather in SF?")]}
        >>> for s in graph.stream(inputs, stream_mode="values"):
        ...     message = s["messages"][-1]
        ...     if isinstance(message, tuple):
        ...         print(message)
        ...     else:
        ...         message.pretty_print()
        ```

        Add complex prompt with custom graph state:

        ```pycon
        >>> from typing import TypedDict
        >>> prompt = ChatPromptTemplate.from_messages(
        ...     [
        ...         ("system", "Today is {today}"),
        ...         ("placeholder", "{messages}"),
        ...     ]
        ... )
        >>>
        >>> class CustomState(TypedDict):
        ...     today: str
        ...     messages: Annotated[list[BaseMessage], add_messages]
        ...     is_last_step: str
        >>>
        >>> graph = create_react_agent(model, tools, state_schema=CustomState, state_modifier=prompt)
        >>> inputs = {"messages": [("user", "What's today's date? And what's the weather in SF?")], "today": "July 16, 2004"}
        >>> for s in graph.stream(inputs, stream_mode="values"):
        ...     message = s["messages"][-1]
        ...     if isinstance(message, tuple):
        ...         print(message)
        ...     else:
        ...         message.pretty_print()
        ```

        Add "chat memory" to the graph:

        ```pycon
        >>> from langgraph.checkpoint.memory import MemorySaver
        >>> graph = create_react_agent(model, tools, checkpointer=MemorySaver())
        >>> config = {"configurable": {"thread_id": "thread-1"}}
        >>> def print_stream(graph, inputs, config):
        ...     for s in graph.stream(inputs, config, stream_mode="values"):
        ...         message = s["messages"][-1]
        ...         if isinstance(message, tuple):
        ...             print(message)
        ...         else:
        ...             message.pretty_print()
        >>> inputs = {"messages": [("user", "What's the weather in SF?")]}
        >>> print_stream(graph, inputs, config)
        >>> inputs2 = {"messages": [("user", "Cool, so then should i go biking today?")]}
        >>> print_stream(graph, inputs2, config)
        ('user', "What's the weather in SF?")
        ================================== Ai Message ==================================
        Tool Calls:
        check_weather (call_ChndaktJxpr6EMPEB5JfOFYc)
        Call ID: call_ChndaktJxpr6EMPEB5JfOFYc
        Args:
            location: San Francisco
        ================================= Tool Message =================================
        Name: check_weather
        It's always sunny in San Francisco
        ================================== Ai Message ==================================
        The weather in San Francisco is sunny. Enjoy your day!
        ================================ Human Message =================================
        Cool, so then should i go biking today?
        ================================== Ai Message ==================================
        Since the weather in San Francisco is sunny, it sounds like a great day for biking! Enjoy your ride!
        ```

        Add an interrupt to let the user confirm before taking an action:

        ```pycon
        >>> graph = create_react_agent(
        ...     model, tools, interrupt_before=["tools"], checkpointer=MemorySaver()
        >>> )
        >>> config = {"configurable": {"thread_id": "thread-1"}}
        >>> def print_stream(graph, inputs, config):
        ...     for s in graph.stream(inputs, config, stream_mode="values"):
        ...         message = s["messages"][-1]
        ...         if isinstance(message, tuple):
        ...             print(message)
        ...         else:
        ...             message.pretty_print()

        >>> inputs = {"messages": [("user", "What's the weather in SF?")]}
        >>> print_stream(graph, inputs, config)
        >>> snapshot = graph.get_state(config)
        >>> print("Next step: ", snapshot.next)
        >>> print_stream(graph, None, config)
        ```

        Add a timeout for a given step:

        ```pycon
        >>> import time
        >>> @tool
        ... def check_weather(location: str, at_time: datetime | None = None) -> float:
        ...     '''Return the weather forecast for the specified location.'''
        ...     time.sleep(2)
        ...     return f"It's always sunny in {location}"
        >>>
        >>> tools = [check_weather]
        >>> graph = create_react_agent(model, tools)
        >>> graph.step_timeout = 1 # Seconds
        >>> for s in graph.stream({"messages": [("user", "what is the weather in sf")]}):
        ...     print(s)
        TimeoutError: Timed out at step 2
        ```
    """

    if state_schema is not None:
        if missing_keys := {"messages", "is_last_step"} - set(
            state_schema.__annotations__
        ):
            raise ValueError(f"Missing required key(s) {missing_keys} in state_schema")

    if isinstance(tools, ToolExecutor):
        tool_classes = tools.tools
        tool_node = ToolNode(tool_classes)
    elif isinstance(tools, ToolNode):
        tool_classes = tools.tools_by_name.values()
        tool_node = tools
    else:
        tool_classes = tools
        tool_node = ToolNode(tool_classes)
    model = model.bind_tools(tool_classes)

    # Define the function that determines whether to continue or not
    def should_continue(state: AgentState):
        messages = state["messages"]
        last_message = messages[-1]
        # If there is no function call, then we finish
        if not last_message.tool_calls:
            return "end"
        # Otherwise if there is, we continue
        else:
            return "continue"

    preprocessor = _get_model_preprocessing_runnable(state_modifier, messages_modifier)
    model_runnable = preprocessor | model

    # Define the function that calls the model
    def call_model(
        state: AgentState,
        config: RunnableConfig,
    ):
        response = model_runnable.invoke(state, config)
        if state["is_last_step"] and response.tool_calls:
            return {
                "messages": [
                    AIMessage(
                        id=response.id,
                        content="Sorry, need more steps to process this request.",
                    )
                ]
            }
        # We return a list, because this will get added to the existing list
        return {"messages": [response]}

    async def acall_model(state: AgentState, config: RunnableConfig):
        response = await model_runnable.ainvoke(state, config)
        if state["is_last_step"] and response.tool_calls:
            return {
                "messages": [
                    AIMessage(
                        id=response.id,
                        content="Sorry, need more steps to process this request.",
                    )
                ]
            }
        # We return a list, because this will get added to the existing list
        return {"messages": [response]}

    # Define a new graph
    workflow = StateGraph(state_schema or AgentState)

    # Define the two nodes we will cycle between
    workflow.add_node("agent", RunnableLambda(call_model, acall_model))
    workflow.add_node("tools", tool_node)

    # Set the entrypoint as `agent`
    # This means that this node is the first one called
    workflow.set_entry_point("agent")

    # We now add a conditional edge
    workflow.add_conditional_edges(
        # First, we define the start node. We use `agent`.
        # This means these are the edges taken after the `agent` node is called.
        "agent",
        # Next, we pass in the function that will determine which node is called next.
        should_continue,
        # Finally we pass in a mapping.
        # The keys are strings, and the values are other nodes.
        # END is a special node marking that the graph should finish.
        # What will happen is we will call `should_continue`, and then the output of that
        # will be matched against the keys in this mapping.
        # Based on which one it matches, that node will then be called.
        {
            # If `tools`, then we call the tool node.
            "continue": "tools",
            # Otherwise we finish.
            "end": END,
        },
    )

    # We now add a normal edge from `tools` to `agent`.
    # This means that after `tools` is called, `agent` node is called next.
    workflow.add_edge("tools", "agent")

    # Finally, we compile it!
    # This compiles it into a LangChain Runnable,
    # meaning you can use it as you would any other runnable
    return workflow.compile(
        checkpointer=checkpointer,
        interrupt_before=interrupt_before,
        interrupt_after=interrupt_after,
        debug=debug,
    )

ToolNode

from langgraph.prebuilt import ToolNode

Bases: RunnableCallable

A node that runs the tools called in the last AIMessage.

It can be used either in StateGraph with a "messages" key or in MessageGraph. If multiple tool calls are requested, they will be run in parallel. The output will be a list of ToolMessages, one for each tool call.

The ToolNode is roughly analogous to:

tools_by_name = {tool.name: tool for tool in tools}
def tool_node(state: dict):
    result = []
    for tool_call in state["messages"][-1].tool_calls:
        tool = tools_by_name[tool_call["name"]]
        observation = tool.invoke(tool_call["args"])
        result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
    return {"messages": result}
Important
  • The state MUST contain a list of messages.
  • The last message MUST be an AIMessage.
  • The AIMessage MUST have tool_calls populated.
Source code in libs/langgraph/langgraph/prebuilt/tool_node.py
class ToolNode(RunnableCallable):
    """A node that runs the tools called in the last AIMessage.

    It can be used either in StateGraph with a "messages" key or in MessageGraph. If
    multiple tool calls are requested, they will be run in parallel. The output will be
    a list of ToolMessages, one for each tool call.

    The `ToolNode` is roughly analogous to:

    ```python
    tools_by_name = {tool.name: tool for tool in tools}
    def tool_node(state: dict):
        result = []
        for tool_call in state["messages"][-1].tool_calls:
            tool = tools_by_name[tool_call["name"]]
            observation = tool.invoke(tool_call["args"])
            result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
        return {"messages": result}
    ```

    Important:
        - The state MUST contain a list of messages.
        - The last message MUST be an `AIMessage`.
        - The `AIMessage` MUST have `tool_calls` populated.
    """

    name: str = "ToolNode"

    def __init__(
        self,
        tools: Sequence[Union[BaseTool, Callable]],
        *,
        name: str = "tools",
        tags: Optional[list[str]] = None,
        handle_tool_errors: Optional[bool] = True,
    ) -> None:
        super().__init__(self._func, self._afunc, name=name, tags=tags, trace=False)
        self.tools_by_name: Dict[str, BaseTool] = {}
        self.handle_tool_errors = handle_tool_errors
        for tool_ in tools:
            if not isinstance(tool_, BaseTool):
                tool_ = create_tool(tool_)
            self.tools_by_name[tool_.name] = tool_

    def _func(
        self,
        input: Union[
            list[AnyMessage],
            dict[str, Any],
            BaseModel,
        ],
        config: RunnableConfig,
    ) -> Any:
        tool_calls, output_type = self._parse_input(input)
        config_list = get_config_list(config, len(tool_calls))
        with get_executor_for_config(config) as executor:
            outputs = [*executor.map(self._run_one, tool_calls, config_list)]
        # TypedDict, pydantic, dataclass, etc. should all be able to load from dict
        return outputs if output_type == "list" else {"messages": outputs}

    async def _afunc(
        self,
        input: Union[
            list[AnyMessage],
            dict[str, Any],
            BaseModel,
        ],
        config: RunnableConfig,
    ) -> Any:
        tool_calls, output_type = self._parse_input(input)
        outputs = await asyncio.gather(
            *(self._arun_one(call, config) for call in tool_calls)
        )
        # TypedDict, pydantic, dataclass, etc. should all be able to load from dict
        return outputs if output_type == "list" else {"messages": outputs}

    def _run_one(self, call: ToolCall, config: RunnableConfig) -> ToolMessage:
        if invalid_tool_message := self._validate_tool_call(call):
            return invalid_tool_message

        try:
            input = {**call, **{"type": "tool_call"}}
            tool_message: ToolMessage = self.tools_by_name[call["name"]].invoke(
                input, config
            )
            # TODO: handle this properly in core
            tool_message.content = str_output(tool_message.content)
            return tool_message
        except Exception as e:
            if not self.handle_tool_errors:
                raise e
            content = TOOL_CALL_ERROR_TEMPLATE.format(error=repr(e))
            return ToolMessage(content, name=call["name"], tool_call_id=call["id"])

    async def _arun_one(self, call: ToolCall, config: RunnableConfig) -> ToolMessage:
        if invalid_tool_message := self._validate_tool_call(call):
            return invalid_tool_message
        try:
            input = {**call, **{"type": "tool_call"}}
            tool_message: ToolMessage = await self.tools_by_name[call["name"]].ainvoke(
                input, config
            )
            # TODO: handle this properly in core
            tool_message.content = str_output(tool_message.content)
            return tool_message
        except Exception as e:
            if not self.handle_tool_errors:
                raise e
            content = TOOL_CALL_ERROR_TEMPLATE.format(error=repr(e))
            return ToolMessage(content, name=call["name"], tool_call_id=call["id"])

    def _parse_input(
        self,
        input: Union[
            list[AnyMessage],
            dict[str, Any],
            BaseModel,
        ],
    ) -> Tuple[List[ToolCall], Literal["list", "dict"]]:
        if isinstance(input, list):
            output_type = "list"
            message: AnyMessage = input[-1]
        elif isinstance(input, dict) and (messages := input.get("messages", [])):
            output_type = "dict"
            message = messages[-1]
        elif messages := getattr(input, "messages", None):
            # Assume dataclass-like state that can coerce from dict
            output_type = "dict"
            message = messages[-1]
        else:
            raise ValueError("No message found in input")

        if not isinstance(message, AIMessage):
            raise ValueError("Last message is not an AIMessage")

        tool_calls = [
            self._inject_state(call, input)
            for call in cast(AIMessage, message).tool_calls
        ]
        return tool_calls, output_type

    def _validate_tool_call(self, call: ToolCall) -> Optional[ToolMessage]:
        if (requested_tool := call["name"]) not in self.tools_by_name:
            content = INVALID_TOOL_NAME_ERROR_TEMPLATE.format(
                requested_tool=requested_tool,
                available_tools=", ".join(self.tools_by_name.keys()),
            )
            return ToolMessage(content, name=requested_tool, tool_call_id=call["id"])
        else:
            return None

    def _inject_state(
        self,
        tool_call: ToolCall,
        input: Union[
            list[AnyMessage],
            dict[str, Any],
            BaseModel,
        ],
    ) -> ToolCall:
        if tool_call["name"] not in self.tools_by_name:
            return tool_call
        state_args = _get_state_args(self.tools_by_name[tool_call["name"]])
        if state_args and isinstance(input, list):
            required_fields = list(state_args.values())
            if (
                len(required_fields) == 1
                and required_fields[0] == "messages"
                or required_fields[0] is None
            ):
                input = {"messages": input}
            else:
                err_msg = (
                    f"Invalid input to ToolNode. Tool {tool_call['name']} requires "
                    f"graph state dict as input."
                )
                if any(state_field for state_field in state_args.values()):
                    required_fields_str = ", ".join(f for f in required_fields if f)
                    err_msg += f" State should contain fields {required_fields_str}."
                raise ValueError(err_msg)
        if isinstance(input, dict):
            tool_state_args = {
                tool_arg: input[state_field] if state_field else input
                for tool_arg, state_field in state_args.items()
            }

        else:
            tool_state_args = {
                tool_arg: getattr(input, state_field) if state_field else input
                for tool_arg, state_field in state_args.items()
            }

        tool_call_copy: ToolCall = copy(tool_call)
        tool_call_copy["args"] = {
            **tool_call_copy["args"],
            **tool_state_args,
        }
        return tool_call_copy

ToolExecutor

from langgraph.prebuilt import ToolExecutor

Bases: RunnableCallable

Executes a tool invocation.

Parameters:

  • tools (Sequence[BaseTool]) –

    A sequence of tools that can be invoked.

  • invalid_tool_msg_template (str, default: INVALID_TOOL_MSG_TEMPLATE ) –

    The template for the error message when an invalid tool is requested. Defaults to INVALID_TOOL_MSG_TEMPLATE.

Examples:

Basic usage:

>>> from langchain_core.tools import tool
>>> from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
...
...
>>> @tool
... def search(query: str) -> str:
...     """Search engine."""
...     return f"Searching for: {query}"
...
...
>>> tools = [search]
>>> executor = ToolExecutor(tools)
...
>>> invocation = ToolInvocation(tool="search", tool_input="What is the capital of France?")
>>> result = executor.invoke(invocation)
>>> print(result)
"Searching for: What is the capital of France?"
Handling invalid tool:

>>> invocation = ToolInvocation(
...     tool="nonexistent", tool_input="What is the capital of France?"
... )
>>> result = executor.invoke(invocation)
>>> print(result)
"nonexistent is not a valid tool, try one of [search]."
Source code in libs/langgraph/langgraph/prebuilt/tool_executor.py
@deprecated("0.2.0", "langgraph.prebuilt.ToolNode", removal="0.3.0")
class ToolExecutor(RunnableCallable):
    """Executes a tool invocation.

    Args:
        tools (Sequence[BaseTool]): A sequence of tools that can be invoked.
        invalid_tool_msg_template (str, optional): The template for the error message
            when an invalid tool is requested. Defaults to INVALID_TOOL_MSG_TEMPLATE.

    Examples:
        Basic usage:

        ```pycon
        >>> from langchain_core.tools import tool
        >>> from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
        ...
        ...
        >>> @tool
        ... def search(query: str) -> str:
        ...     \"\"\"Search engine.\"\"\"
        ...     return f"Searching for: {query}"
        ...
        ...
        >>> tools = [search]
        >>> executor = ToolExecutor(tools)
        ...
        >>> invocation = ToolInvocation(tool="search", tool_input="What is the capital of France?")
        >>> result = executor.invoke(invocation)
        >>> print(result)
        "Searching for: What is the capital of France?"
        ```
        Handling invalid tool:

        ```pycon
        >>> invocation = ToolInvocation(
        ...     tool="nonexistent", tool_input="What is the capital of France?"
        ... )
        >>> result = executor.invoke(invocation)
        >>> print(result)
        "nonexistent is not a valid tool, try one of [search]."
        ```
    """

    def __init__(
        self,
        tools: Sequence[Union[BaseTool, Callable]],
        *,
        invalid_tool_msg_template: str = INVALID_TOOL_MSG_TEMPLATE,
    ) -> None:
        super().__init__(self._execute, afunc=self._aexecute, trace=False)
        tools_ = [
            tool if isinstance(tool, BaseTool) else create_tool(tool) for tool in tools
        ]
        self.tools = tools_
        self.tool_map = {t.name: t for t in tools}
        self.invalid_tool_msg_template = invalid_tool_msg_template

    def _execute(
        self, tool_invocation: ToolInvocationInterface, config: RunnableConfig
    ) -> Any:
        if tool_invocation.tool not in self.tool_map:
            return self.invalid_tool_msg_template.format(
                requested_tool_name=tool_invocation.tool,
                available_tool_names_str=", ".join([t.name for t in self.tools]),
            )
        else:
            tool = self.tool_map[tool_invocation.tool]
            output = tool.invoke(tool_invocation.tool_input, config)
            return output

    async def _aexecute(
        self, tool_invocation: ToolInvocationInterface, config: RunnableConfig
    ) -> Any:
        if tool_invocation.tool not in self.tool_map:
            return self.invalid_tool_msg_template.format(
                requested_tool_name=tool_invocation.tool,
                available_tool_names_str=", ".join([t.name for t in self.tools]),
            )
        else:
            tool = self.tool_map[tool_invocation.tool]
            output = await tool.ainvoke(tool_invocation.tool_input, config)
            return output

ToolInvocation

from langgraph.prebuilt import ToolInvocation

Bases: Serializable

Information about how to invoke a tool.

Attributes:

  • tool (str) –

    The name of the Tool to execute.

  • tool_input (Union[str, dict]) –

    The input to pass in to the Tool.

Examples:

Basic usage:

>>> invocation = ToolInvocation(
...    tool="search",
...     tool_input="What is the capital of France?"
... )

Source code in libs/langgraph/langgraph/prebuilt/tool_executor.py
@deprecated("0.2.0", "langgraph.prebuilt.ToolNode", removal="0.3.0")
class ToolInvocation(Serializable):
    """Information about how to invoke a tool.

    Attributes:
        tool (str): The name of the Tool to execute.
        tool_input (Union[str, dict]): The input to pass in to the Tool.

    Examples:
        Basic usage:
        ```pycon
        >>> invocation = ToolInvocation(
        ...    tool="search",
        ...     tool_input="What is the capital of France?"
        ... )
        ```
    """

    tool: str
    tool_input: Union[str, dict]

tools_condition

from langgraph.prebuilt import tools_condition

Use in the conditional_edge to route to the ToolNode if the last message

has tool calls. Otherwise, route to the end.

Parameters:

  • state (Union[list[AnyMessage], dict[str, Any], BaseModel]) –

    The state to check for tool calls. Must have a list of messages (MessageGraph) or have the "messages" key (StateGraph).

Returns:

  • Literal['tools', '__end__']

    The next node to route to.

Examples:

Create a custom ReAct-style agent with tools.

>>> from langchain_anthropic import ChatAnthropic
>>> from langchain_core.tools import tool
...
>>> from langgraph.graph import StateGraph
>>> from langgraph.prebuilt import ToolNode, tools_condition
>>> from langgraph.graph.message import add_messages
...
>>> from typing import TypedDict, Annotated
...
>>> @tool
>>> def divide(a: float, b: float) -> int:
...     """Return a / b."""
...     return a / b
...
>>> llm = ChatAnthropic(model="claude-3-haiku-20240307")
>>> tools = [divide]
...
>>> class State(TypedDict):
...     messages: Annotated[list, add_messages]
>>>
>>> graph_builder = StateGraph(State)
>>> graph_builder.add_node("tools", ToolNode(tools))
>>> graph_builder.add_node("chatbot", lambda state: {"messages":llm.bind_tools(tools).invoke(state['messages'])})
>>> graph_builder.add_edge("tools", "chatbot")
>>> graph_builder.add_conditional_edges(
...     "chatbot", tools_condition
... )
>>> graph_builder.set_entry_point("chatbot")
>>> graph = graph_builder.compile()
>>> graph.invoke({"messages": {"role": "user", "content": "What's 329993 divided by 13662?"}})
Source code in libs/langgraph/langgraph/prebuilt/tool_node.py
def tools_condition(
    state: Union[list[AnyMessage], dict[str, Any], BaseModel],
) -> Literal["tools", "__end__"]:
    """Use in the conditional_edge to route to the ToolNode if the last message

    has tool calls. Otherwise, route to the end.

    Args:
        state (Union[list[AnyMessage], dict[str, Any], BaseModel]): The state to check for
            tool calls. Must have a list of messages (MessageGraph) or have the
            "messages" key (StateGraph).

    Returns:
        The next node to route to.


    Examples:
        Create a custom ReAct-style agent with tools.

        ```pycon
        >>> from langchain_anthropic import ChatAnthropic
        >>> from langchain_core.tools import tool
        ...
        >>> from langgraph.graph import StateGraph
        >>> from langgraph.prebuilt import ToolNode, tools_condition
        >>> from langgraph.graph.message import add_messages
        ...
        >>> from typing import TypedDict, Annotated
        ...
        >>> @tool
        >>> def divide(a: float, b: float) -> int:
        ...     \"\"\"Return a / b.\"\"\"
        ...     return a / b
        ...
        >>> llm = ChatAnthropic(model="claude-3-haiku-20240307")
        >>> tools = [divide]
        ...
        >>> class State(TypedDict):
        ...     messages: Annotated[list, add_messages]
        >>>
        >>> graph_builder = StateGraph(State)
        >>> graph_builder.add_node("tools", ToolNode(tools))
        >>> graph_builder.add_node("chatbot", lambda state: {"messages":llm.bind_tools(tools).invoke(state['messages'])})
        >>> graph_builder.add_edge("tools", "chatbot")
        >>> graph_builder.add_conditional_edges(
        ...     "chatbot", tools_condition
        ... )
        >>> graph_builder.set_entry_point("chatbot")
        >>> graph = graph_builder.compile()
        >>> graph.invoke({"messages": {"role": "user", "content": "What's 329993 divided by 13662?"}})
        ```
    """
    if isinstance(state, list):
        ai_message = state[-1]
    elif isinstance(state, dict) and (messages := state.get("messages", [])):
        ai_message = messages[-1]
    elif messages := getattr(state, "messages", []):
        ai_message = messages[-1]
    else:
        raise ValueError(f"No messages found in input state to tool_edge: {state}")
    if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
        return "tools"
    return "__end__"

ValidationNode

from langgraph.prebuilt import ValidationNode

Bases: RunnableCallable

A node that validates all tools requests from the last AIMessage.

It can be used either in StateGraph with a "messages" key or in MessageGraph.

Note

This node does not actually run the tools, it only validates the tool calls, which is useful for extraction and other use cases where you need to generate structured output that conforms to a complex schema without losing the original messages and tool IDs (for use in multi-turn conversations).

Parameters:

  • schemas (Sequence[Union[BaseTool, Type[BaseModel], Callable]]) –

    A list of schemas to validate the tool calls with. These can be any of the following: - A pydantic BaseModel class - A BaseTool instance (the args_schema will be used) - A function (a schema will be created from the function signature)

  • format_error (Optional[Callable[[BaseException, ToolCall, Type[BaseModel]], str]], default: None ) –

    A function that takes an exception, a ToolCall, and a schema and returns a formatted error string. By default, it returns the exception repr and a message to respond after fixing validation errors.

  • name (str, default: 'validation' ) –

    The name of the node.

  • tags (Optional[list[str]], default: None ) –

    A list of tags to add to the node.

Returns:

  • Union[Dict[str, List[ToolMessage]], Sequence[ToolMessage]]

    A list of ToolMessages with the validated content or error messages.

Examples:

Example usage for re-prompting the model to generate a valid response:

>>> from typing import Literal, Annotated, TypedDict
...
>>> from langchain_anthropic import ChatAnthropic
>>> from pydantic import BaseModel, validator
...
>>> from langgraph.graph import END, START, StateGraph
>>> from langgraph.prebuilt import ValidationNode
>>> from langgraph.graph.message import add_messages
...
...
>>> class SelectNumber(BaseModel):
...     a: int
...
...     @validator("a")
...     def a_must_be_meaningful(cls, v):
...         if v != 37:
...             raise ValueError("Only 37 is allowed")
...         return v
...
...
>>> class State(TypedDict):
...     messages: Annotated[list, add_messages]
...
>>> builder = StateGraph(State)
>>> llm = ChatAnthropic(model="claude-3-haiku-20240307").bind_tools([SelectNumber])
>>> builder.add_node("model", llm)
>>> builder.add_node("validation", ValidationNode([SelectNumber]))
>>> builder.add_edge(START, "model")
...
...
>>> def should_validate(state: list) -> Literal["validation", "__end__"]:
...     if state[-1].tool_calls:
...         return "validation"
...     return END
...
...
>>> builder.add_conditional_edges("model", should_validate)
...
...
>>> def should_reprompt(state: list) -> Literal["model", "__end__"]:
...     for msg in state[::-1]:
...         # None of the tool calls were errors
...         if msg.type == "ai":
...             return END
...         if msg.additional_kwargs.get("is_error"):
...             return "model"
...     return END
...
...
>>> builder.add_conditional_edges("validation", should_reprompt)
...
...
>>> graph = builder.compile()
>>> res = graph.invoke(("user", "Select a number, any number"))
>>> # Show the retry logic
>>> for msg in res:
...     msg.pretty_print()
================================ Human Message =================================
Select a number, any number
================================== Ai Message ==================================
[{'id': 'toolu_01JSjT9Pq8hGmTgmMPc6KnvM', 'input': {'a': 42}, 'name': 'SelectNumber', 'type': 'tool_use'}]
Tool Calls:
SelectNumber (toolu_01JSjT9Pq8hGmTgmMPc6KnvM)
Call ID: toolu_01JSjT9Pq8hGmTgmMPc6KnvM
Args:
    a: 42
================================= Tool Message =================================
Name: SelectNumber
ValidationError(model='SelectNumber', errors=[{'loc': ('a',), 'msg': 'Only 37 is allowed', 'type': 'value_error'}])
Respond after fixing all validation errors.
================================== Ai Message ==================================
[{'id': 'toolu_01PkxSVxNxc5wqwCPW1FiSmV', 'input': {'a': 37}, 'name': 'SelectNumber', 'type': 'tool_use'}]
Tool Calls:
SelectNumber (toolu_01PkxSVxNxc5wqwCPW1FiSmV)
Call ID: toolu_01PkxSVxNxc5wqwCPW1FiSmV
Args:
    a: 37
================================= Tool Message =================================
Name: SelectNumber
{"a": 37}
Source code in libs/langgraph/langgraph/prebuilt/tool_validator.py
class ValidationNode(RunnableCallable):
    """A node that validates all tools requests from the last AIMessage.

    It can be used either in StateGraph with a "messages" key or in MessageGraph.

    !!! note

        This node does not actually **run** the tools, it only validates the tool calls,
        which is useful for extraction and other use cases where you need to generate
        structured output that conforms to a complex schema without losing the original
        messages and tool IDs (for use in multi-turn conversations).

    Args:
        schemas: A list of schemas to validate the tool calls with. These can be
            any of the following:
            - A pydantic BaseModel class
            - A BaseTool instance (the args_schema will be used)
            - A function (a schema will be created from the function signature)
        format_error: A function that takes an exception, a ToolCall, and a schema
            and returns a formatted error string. By default, it returns the
            exception repr and a message to respond after fixing validation errors.
        name: The name of the node.
        tags: A list of tags to add to the node.

    Returns:
        (Union[Dict[str, List[ToolMessage]], Sequence[ToolMessage]]): A list of ToolMessages with the validated content or error messages.

    Examples:
        Example usage for re-prompting the model to generate a valid response:
        >>> from typing import Literal, Annotated, TypedDict
        ...
        >>> from langchain_anthropic import ChatAnthropic
        >>> from pydantic import BaseModel, validator
        ...
        >>> from langgraph.graph import END, START, StateGraph
        >>> from langgraph.prebuilt import ValidationNode
        >>> from langgraph.graph.message import add_messages
        ...
        ...
        >>> class SelectNumber(BaseModel):
        ...     a: int
        ...
        ...     @validator("a")
        ...     def a_must_be_meaningful(cls, v):
        ...         if v != 37:
        ...             raise ValueError("Only 37 is allowed")
        ...         return v
        ...
        ...
        >>> class State(TypedDict):
        ...     messages: Annotated[list, add_messages]
        ...
        >>> builder = StateGraph(State)
        >>> llm = ChatAnthropic(model="claude-3-haiku-20240307").bind_tools([SelectNumber])
        >>> builder.add_node("model", llm)
        >>> builder.add_node("validation", ValidationNode([SelectNumber]))
        >>> builder.add_edge(START, "model")
        ...
        ...
        >>> def should_validate(state: list) -> Literal["validation", "__end__"]:
        ...     if state[-1].tool_calls:
        ...         return "validation"
        ...     return END
        ...
        ...
        >>> builder.add_conditional_edges("model", should_validate)
        ...
        ...
        >>> def should_reprompt(state: list) -> Literal["model", "__end__"]:
        ...     for msg in state[::-1]:
        ...         # None of the tool calls were errors
        ...         if msg.type == "ai":
        ...             return END
        ...         if msg.additional_kwargs.get("is_error"):
        ...             return "model"
        ...     return END
        ...
        ...
        >>> builder.add_conditional_edges("validation", should_reprompt)
        ...
        ...
        >>> graph = builder.compile()
        >>> res = graph.invoke(("user", "Select a number, any number"))
        >>> # Show the retry logic
        >>> for msg in res:
        ...     msg.pretty_print()
        ================================ Human Message =================================
        Select a number, any number
        ================================== Ai Message ==================================
        [{'id': 'toolu_01JSjT9Pq8hGmTgmMPc6KnvM', 'input': {'a': 42}, 'name': 'SelectNumber', 'type': 'tool_use'}]
        Tool Calls:
        SelectNumber (toolu_01JSjT9Pq8hGmTgmMPc6KnvM)
        Call ID: toolu_01JSjT9Pq8hGmTgmMPc6KnvM
        Args:
            a: 42
        ================================= Tool Message =================================
        Name: SelectNumber
        ValidationError(model='SelectNumber', errors=[{'loc': ('a',), 'msg': 'Only 37 is allowed', 'type': 'value_error'}])
        Respond after fixing all validation errors.
        ================================== Ai Message ==================================
        [{'id': 'toolu_01PkxSVxNxc5wqwCPW1FiSmV', 'input': {'a': 37}, 'name': 'SelectNumber', 'type': 'tool_use'}]
        Tool Calls:
        SelectNumber (toolu_01PkxSVxNxc5wqwCPW1FiSmV)
        Call ID: toolu_01PkxSVxNxc5wqwCPW1FiSmV
        Args:
            a: 37
        ================================= Tool Message =================================
        Name: SelectNumber
        {"a": 37}

    """

    def __init__(
        self,
        schemas: Sequence[Union[BaseTool, Type[BaseModel], Callable]],
        *,
        format_error: Optional[
            Callable[[BaseException, ToolCall, Type[BaseModel]], str]
        ] = None,
        name: str = "validation",
        tags: Optional[list[str]] = None,
    ) -> None:
        super().__init__(self._func, None, name=name, tags=tags, trace=False)
        self._format_error = format_error or _default_format_error
        self.schemas_by_name: Dict[str, Type[BaseModel]] = {}
        for schema in schemas:
            if isinstance(schema, BaseTool):
                if schema.args_schema is None:
                    raise ValueError(
                        f"Tool {schema.name} does not have an args_schema defined."
                    )
                self.schemas_by_name[schema.name] = schema.args_schema
            elif isinstance(schema, type) and issubclass(
                schema, (BaseModel, BaseModelV1)
            ):
                self.schemas_by_name[schema.__name__] = cast(Type[BaseModel], schema)
            elif callable(schema):
                base_model = create_schema_from_function("Validation", schema)
                self.schemas_by_name[schema.__name__] = base_model
            else:
                raise ValueError(
                    f"Unsupported input to ValidationNode. Expected BaseModel, tool or function. Got: {type(schema)}."
                )

    def _get_message(
        self, input: Union[list[AnyMessage], dict[str, Any]]
    ) -> Tuple[str, AIMessage]:
        """Extract the last AIMessage from the input."""
        if isinstance(input, list):
            output_type = "list"
            messages: list = input
        elif messages := input.get("messages", []):
            output_type = "dict"
        else:
            raise ValueError("No message found in input")
        message: AnyMessage = messages[-1]
        if not isinstance(message, AIMessage):
            raise ValueError("Last message is not an AIMessage")
        return output_type, message

    def _func(
        self, input: Union[list[AnyMessage], dict[str, Any]], config: RunnableConfig
    ) -> Any:
        """Validate and run tool calls synchronously."""
        output_type, message = self._get_message(input)

        def run_one(call: ToolCall):
            schema = self.schemas_by_name[call["name"]]
            try:
                if issubclass(schema, BaseModel):
                    output = schema.model_validate(call["args"])
                    content = output.model_dump_json()
                elif issubclass(schema, BaseModelV1):
                    output = schema.validate(call["args"])
                    content = output.json()
                else:
                    raise ValueError(
                        f"Unsupported schema type: {type(schema)}. Expected BaseModel or BaseModelV1."
                    )
                return ToolMessage(
                    content=content,
                    name=call["name"],
                    tool_call_id=cast(str, call["id"]),
                )
            except (ValidationError, ValidationErrorV1) as e:
                return ToolMessage(
                    content=self._format_error(e, call, schema),
                    name=call["name"],
                    tool_call_id=cast(str, call["id"]),
                    additional_kwargs={"is_error": True},
                )

        with get_executor_for_config(config) as executor:
            outputs = [*executor.map(run_one, message.tool_calls)]
            if output_type == "list":
                return outputs
            else:
                return {"messages": outputs}

InjectedState

from langgraph.prebuilt import InjectedState

Bases: InjectedToolArg

Annotation for a Tool arg that is meant to be populated with the graph state.

Any Tool argument annotated with InjectedState will be hidden from a tool-calling model, so that the model doesn't attempt to generate the argument. If using ToolNode, the appropriate graph state field will be automatically injected into the model-generated tool args.

Parameters:

  • field (Optional[str], default: None ) –

    The key from state to insert. If None, the entire state is expected to be passed in.

Example
from typing import List
from typing_extensions import Annotated, TypedDict

from langchain_core.messages import BaseMessage, AIMessage
from langchain_core.tools import tool

from langgraph.prebuilt import InjectedState, ToolNode


class AgentState(TypedDict):
    messages: List[BaseMessage]
    foo: str

@tool
def state_tool(x: int, state: Annotated[dict, InjectedState]) -> str:
    '''Do something with state.'''
    if len(state["messages"]) > 2:
        return state["foo"] + str(x)
    else:
        return "not enough messages"

@tool
def foo_tool(x: int, foo: Annotated[str, InjectedState("foo")]) -> str:
    '''Do something else with state.'''
    return foo + str(x + 1)

node = ToolNode([state_tool, foo_tool])

tool_call1 = {"name": "state_tool", "args": {"x": 1}, "id": "1", "type": "tool_call"}
tool_call2 = {"name": "foo_tool", "args": {"x": 1}, "id": "2", "type": "tool_call"}
state = {
    "messages": [AIMessage("", tool_calls=[tool_call1, tool_call2])],
    "foo": "bar",
}
node.invoke(state)
[
    ToolMessage(content='not enough messages', name='state_tool', tool_call_id='1'),
    ToolMessage(content='bar2', name='foo_tool', tool_call_id='2')
]
Source code in libs/langgraph/langgraph/prebuilt/tool_node.py
class InjectedState(InjectedToolArg):
    """Annotation for a Tool arg that is meant to be populated with the graph state.

    Any Tool argument annotated with InjectedState will be hidden from a tool-calling
    model, so that the model doesn't attempt to generate the argument. If using
    ToolNode, the appropriate graph state field will be automatically injected into
    the model-generated tool args.

    Args:
        field: The key from state to insert. If None, the entire state is expected to
            be passed in.

    Example:
        ```python
        from typing import List
        from typing_extensions import Annotated, TypedDict

        from langchain_core.messages import BaseMessage, AIMessage
        from langchain_core.tools import tool

        from langgraph.prebuilt import InjectedState, ToolNode


        class AgentState(TypedDict):
            messages: List[BaseMessage]
            foo: str

        @tool
        def state_tool(x: int, state: Annotated[dict, InjectedState]) -> str:
            '''Do something with state.'''
            if len(state["messages"]) > 2:
                return state["foo"] + str(x)
            else:
                return "not enough messages"

        @tool
        def foo_tool(x: int, foo: Annotated[str, InjectedState("foo")]) -> str:
            '''Do something else with state.'''
            return foo + str(x + 1)

        node = ToolNode([state_tool, foo_tool])

        tool_call1 = {"name": "state_tool", "args": {"x": 1}, "id": "1", "type": "tool_call"}
        tool_call2 = {"name": "foo_tool", "args": {"x": 1}, "id": "2", "type": "tool_call"}
        state = {
            "messages": [AIMessage("", tool_calls=[tool_call1, tool_call2])],
            "foo": "bar",
        }
        node.invoke(state)
        ```

        ```pycon
        [
            ToolMessage(content='not enough messages', name='state_tool', tool_call_id='1'),
            ToolMessage(content='bar2', name='foo_tool', tool_call_id='2')
        ]
        ```
    """  # noqa: E501

    def __init__(self, field: Optional[str] = None) -> None:
        self.field = field

Comments