Graph Definitions¶
Graph
¶
add_conditional_edges(source: str, path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self
¶
Add a conditional edge from the starting node to any number of destination nodes.
Parameters:
-
source
(
) –str The starting node. This conditional edge will run when exiting this node.
-
path
(
) –Union [Callable ,Runnable ]The callable that determines the next node or nodes. If not specifying
path_map
it should return one or more nodes. If it returns END, the graph will stop execution. -
path_map
(
, default:Optional [dict [Hashable ,str ]]None
) –Optional mapping of paths to node names. If omitted the paths returned by
path
should be node names. -
then
(
, default:Optional [str ]None
) –The name of a node to execute after the nodes selected by
path
.
Returns:
-
–Self None
Without typehints on the path
function's return value (e.g., -> Literal["foo", "__end__"]:
)
or a path_map, the graph visualization assumes the edge could transition to any node in the graph.
set_entry_point(key: str) -> Self
¶
Specifies the first node to be called in the graph.
Equivalent to calling add_edge(START, key)
.
Parameters:
-
key
(
) –str The key of the node to set as the entry point.
Returns:
-
–Self None
set_conditional_entry_point(path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self
¶
Sets a conditional entry point in the graph.
Parameters:
-
path
(
) –Union [Callable ,Runnable ]The callable that determines the next node or nodes. If not specifying
path_map
it should return one or more nodes. If it returns END, the graph will stop execution. -
path_map
(
, default:Optional [dict [str ,str ]]None
) –Optional mapping of paths to node names. If omitted the paths returned by
path
should be node names. -
then
(
, default:Optional [str ]None
) –The name of a node to execute after the nodes selected by
path
.
Returns:
-
–Self None
set_finish_point(key: str) -> Self
¶
Marks a node as a finish point of the graph.
If the graph reaches this node, it will cease execution.
Parameters:
-
key
(
) –str The key of the node to set as the finish point.
Returns:
-
–Self None
CompiledGraph
¶
Bases:
stream_mode: StreamMode = stream_mode
class-attribute
instance-attribute
¶
Mode to stream output, defaults to 'values'.
stream_channels: Optional[Union[str, Sequence[str]]] = stream_channels
class-attribute
instance-attribute
¶
Channels to stream, defaults to all channels not in reserved channels
step_timeout: Optional[float] = step_timeout
class-attribute
instance-attribute
¶
Maximum time to wait for a step to complete, in seconds. Defaults to None.
debug: bool = debug if debug is not None else get_debug()
instance-attribute
¶
Whether to print debug information during execution. Defaults to False.
checkpointer: Checkpointer = checkpointer
class-attribute
instance-attribute
¶
Checkpointer used to save and load graph state. Defaults to None.
store: Optional[BaseStore] = store
class-attribute
instance-attribute
¶
Memory store to use for SharedValues. Defaults to None.
retry_policy: Optional[RetryPolicy] = retry_policy
class-attribute
instance-attribute
¶
Retry policy to use when running tasks. Set to None to disable.
get_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot
¶
Get the current state of the graph.
aget_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot
async
¶
Get the current state of the graph.
update_state(config: RunnableConfig, values: Optional[Union[dict[str, Any], Any]], as_node: Optional[str] = None) -> RunnableConfig
¶
Update the state of the graph with the given values, as if they came from
node as_node
. If as_node
is not provided, it will be set to the last node
that updated the state, if not ambiguous.
aupdate_state(config: RunnableConfig, values: dict[str, Any] | Any, as_node: Optional[str] = None) -> RunnableConfig
async
¶
Update the state of the graph asynchronously with the given values, as if they came from
node as_node
. If as_node
is not provided, it will be set to the last node
that updated the state, if not ambiguous.
stream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> Iterator[Union[dict[str, Any], Any]]
¶
Stream graph steps for a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input to the graph.
-
config
(
, default:Optional [RunnableConfig ]None
) –The configuration to use for the run.
-
stream_mode
(
, default:Optional [Union [StreamMode ,list [StreamMode ]]]None
) –The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –The keys to stream, defaults to all non-context channels.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt before, defaults to all nodes in the graph.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt after, defaults to all nodes in the graph.
-
debug
(
, default:Optional [bool ]None
) –Whether to print debug information during execution, defaults to False.
-
subgraphs
(
, default:bool False
) –Whether to stream subgraphs, defaults to False.
Yields:
-
–Union [dict [str ,Any ],Any ]The output of each step in the graph. The output shape depends on the stream_mode.
Examples:
Using different stream modes with a graph:
>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
... alist: Annotated[list, operator.add]
... another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
>>> for event in graph.stream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
... print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
>>> for event in graph.stream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
... print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
>>> for event in graph.stream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
... print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}
astream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> AsyncIterator[Union[dict[str, Any], Any]]
async
¶
Stream graph steps for a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input to the graph.
-
config
(
, default:Optional [RunnableConfig ]None
) –The configuration to use for the run.
-
stream_mode
(
, default:Optional [Union [StreamMode ,list [StreamMode ]]]None
) –The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –The keys to stream, defaults to all non-context channels.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt before, defaults to all nodes in the graph.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt after, defaults to all nodes in the graph.
-
debug
(
, default:Optional [bool ]None
) –Whether to print debug information during execution, defaults to False.
-
subgraphs
(
, default:bool False
) –Whether to stream subgraphs, defaults to False.
Yields:
-
–AsyncIterator [Union [dict [str ,Any ],Any ]]The output of each step in the graph. The output shape depends on the stream_mode.
Examples:
Using different stream modes with a graph:
>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
... alist: Annotated[list, operator.add]
... another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
... print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
... print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
... print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}
invoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]
¶
Run the graph with a single input and config.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input data for the graph. It can be a dictionary or any other type.
-
config
(
, default:Optional [RunnableConfig ]None
) –Optional. The configuration for the graph run.
-
stream_mode
(
, default:StreamMode 'values'
) –Optional[str]. The stream mode for the graph run. Default is "values".
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –Optional. The output keys to retrieve from the graph run.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt the graph run before.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt the graph run after.
-
debug
(
, default:Optional [bool ]None
) –Optional. Enable debug mode for the graph run.
-
**kwargs
(
, default:Any {}
) –Additional keyword arguments to pass to the graph run.
Returns:
-
–Union [dict [str ,Any ],Any ]The output of the graph run. If stream_mode is "values", it returns the latest output.
-
–Union [dict [str ,Any ],Any ]If stream_mode is not "values", it returns a list of output chunks.
ainvoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]
async
¶
Asynchronously invoke the graph on a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input data for the computation. It can be a dictionary or any other type.
-
config
(
, default:Optional [RunnableConfig ]None
) –Optional. The configuration for the computation.
-
stream_mode
(
, default:StreamMode 'values'
) –Optional. The stream mode for the computation. Default is "values".
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –Optional. The output keys to include in the result. Default is None.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt before. Default is None.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt after. Default is None.
-
debug
(
, default:Optional [bool ]None
) –Optional. Whether to enable debug mode. Default is None.
-
**kwargs
(
, default:Any {}
) –Additional keyword arguments.
Returns:
-
–Union [dict [str ,Any ],Any ]The result of the computation. If stream_mode is "values", it returns the latest value.
-
–Union [dict [str ,Any ],Any ]If stream_mode is "chunks", it returns a list of chunks.
get_graph(config: Optional[RunnableConfig] = None, *, xray: Union[int, bool] = False) -> DrawableGraph
¶
Returns a drawable representation of the computation graph.
StateGraph
¶
Bases:
A graph whose nodes communicate by reading and writing to a shared state.
The signature of each node is State -> Partial
Each state key can optionally be annotated with a reducer function that will be used to aggregate the values of that key received from multiple nodes. The signature of a reducer function is (Value, Value) -> Value.
Parameters:
-
state_schema
(
, default:Type [Any ]None
) –The schema class that defines the state.
-
config_schema
(
, default:Optional [Type [Any ]]None
) –The schema class that defines the configuration. Use this to expose configurable parameters in your API.
Examples:
>>> from langchain_core.runnables import RunnableConfig
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.checkpoint.memory import MemorySaver
>>> from langgraph.graph import StateGraph
>>>
>>> def reducer(a: list, b: int | None) -> list:
... if b is not None:
... return a + [b]
... return a
>>>
>>> class State(TypedDict):
... x: Annotated[list, reducer]
>>>
>>> class ConfigSchema(TypedDict):
... r: float
>>>
>>> graph = StateGraph(State, config_schema=ConfigSchema)
>>>
>>> def node(state: State, config: RunnableConfig) -> dict:
... r = config["configurable"].get("r", 1.0)
... x = state["x"][-1]
... next_value = x * r * (1 - x)
... return {"x": next_value}
>>>
>>> graph.add_node("A", node)
>>> graph.set_entry_point("A")
>>> graph.set_finish_point("A")
>>> compiled = graph.compile()
>>>
>>> print(compiled.config_specs)
[ConfigurableFieldSpec(id='r', annotation=<class 'float'>, name=None, description=None, default=None, is_shared=False, dependencies=None)]
>>>
>>> step1 = compiled.invoke({"x": 0.5}, {"configurable": {"r": 3.0}})
>>> print(step1)
{'x': [0.5, 0.75]}
add_conditional_edges(source: str, path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self
¶
Add a conditional edge from the starting node to any number of destination nodes.
Parameters:
-
source
(
) –str The starting node. This conditional edge will run when exiting this node.
-
path
(
) –Union [Callable ,Runnable ]The callable that determines the next node or nodes. If not specifying
path_map
it should return one or more nodes. If it returns END, the graph will stop execution. -
path_map
(
, default:Optional [dict [Hashable ,str ]]None
) –Optional mapping of paths to node names. If omitted the paths returned by
path
should be node names. -
then
(
, default:Optional [str ]None
) –The name of a node to execute after the nodes selected by
path
.
Returns:
-
–Self None
Without typehints on the path
function's return value (e.g., -> Literal["foo", "__end__"]:
)
or a path_map, the graph visualization assumes the edge could transition to any node in the graph.
set_entry_point(key: str) -> Self
¶
Specifies the first node to be called in the graph.
Equivalent to calling add_edge(START, key)
.
Parameters:
-
key
(
) –str The key of the node to set as the entry point.
Returns:
-
–Self None
set_conditional_entry_point(path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self
¶
Sets a conditional entry point in the graph.
Parameters:
-
path
(
) –Union [Callable ,Runnable ]The callable that determines the next node or nodes. If not specifying
path_map
it should return one or more nodes. If it returns END, the graph will stop execution. -
path_map
(
, default:Optional [dict [str ,str ]]None
) –Optional mapping of paths to node names. If omitted the paths returned by
path
should be node names. -
then
(
, default:Optional [str ]None
) –The name of a node to execute after the nodes selected by
path
.
Returns:
-
–Self None
set_finish_point(key: str) -> Self
¶
Marks a node as a finish point of the graph.
If the graph reaches this node, it will cease execution.
Parameters:
-
key
(
) –str The key of the node to set as the finish point.
Returns:
-
–Self None
add_node(node: Union[str, RunnableLike], action: Optional[RunnableLike] = None, *, metadata: Optional[dict[str, Any]] = None, input: Optional[Type[Any]] = None, retry: Optional[RetryPolicy] = None) -> Self
¶
Adds a new node to the state graph.
Will take the name of the function/runnable as the node name.
Parameters:
-
node
(Union[str, RunnableLike)]
) –The function or runnable this node will run.
-
action
(
, default:Optional [RunnableLike ]None
) –The action associated with the node. (default: None)
-
metadata
(
, default:Optional [dict [str ,Any ]]None
) –The metadata associated with the node. (default: None)
-
input
(
, default:Optional [Type [Any ]]None
) –The input schema for the node. (default: the graph's input schema)
-
retry
(
, default:Optional [RetryPolicy ]None
) –The policy for retrying the node. (default: None)
Raises: ValueError: If the key is already being used as a state key.
Examples:
>>> from langgraph.graph import START, StateGraph
...
>>> def my_node(state, config):
... return {"x": state["x"] + 1}
...
>>> builder = StateGraph(dict)
>>> builder.add_node(my_node) # node name will be 'my_node'
>>> builder.add_edge(START, "my_node")
>>> graph = builder.compile()
>>> graph.invoke({"x": 1})
{'x': 2}
>>> builder = StateGraph(dict)
>>> builder.add_node("my_fair_node", my_node)
>>> builder.add_edge(START, "my_fair_node")
>>> graph = builder.compile()
>>> graph.invoke({"x": 1})
{'x': 2}
Returns:
-
–Self StateGraph
add_edge(start_key: Union[str, list[str]], end_key: str) -> Self
¶
Adds a directed edge from the start node to the end node.
If the graph transitions to the start_key node, it will always transition to the end_key node next.
Parameters:
-
start_key
(
) –Union [str ,list [str ]]The key(s) of the start node(s) of the edge.
-
end_key
(
) –str The key of the end node of the edge.
Raises:
-
–ValueError If the start key is 'END' or if the start key or end key is not present in the graph.
Returns:
-
–Self StateGraph
add_sequence(nodes: Sequence[Union[RunnableLike, tuple[str, RunnableLike]]]) -> Self
¶
Add a sequence of nodes that will be executed in the provided order.
Parameters:
-
nodes
(
) –Sequence [Union [RunnableLike ,tuple [str ,RunnableLike ]]]A sequence of RunnableLike objects (e.g. a LangChain Runnable or a callable) or (name, RunnableLike) tuples. If no names are provided, the name will be inferred from the node object (e.g. a runnable or a callable name). Each node will be executed in the order provided.
Raises:
-
–ValueError if the sequence is empty.
-
–ValueError if the sequence contains duplicate node names.
Returns:
-
–Self StateGraph
compile(checkpointer: Checkpointer = None, *, store: Optional[BaseStore] = None, interrupt_before: Optional[Union[All, list[str]]] = None, interrupt_after: Optional[Union[All, list[str]]] = None, debug: bool = False) -> CompiledStateGraph
¶
Compiles the state graph into a CompiledGraph
object.
The compiled graph implements the Runnable
interface and can be invoked,
streamed, batched, and run asynchronously.
Parameters:
-
checkpointer
(
, default:Optional [Union [Checkpointer ,Literal [False]]]None
) –A checkpoint saver object or flag. If provided, this Checkpointer serves as a fully versioned "short-term memory" for the graph, allowing it to be paused, resumed, and replayed from any point. If None, it may inherit the parent graph's checkpointer when used as a subgraph. If False, it will not use or inherit any checkpointer.
-
interrupt_before
(
, default:Optional [Sequence [str ]]None
) –An optional list of node names to interrupt before.
-
interrupt_after
(
, default:Optional [Sequence [str ]]None
) –An optional list of node names to interrupt after.
-
debug
(
, default:bool False
) –A flag indicating whether to enable debug mode.
Returns:
-
CompiledStateGraph
(
) –CompiledStateGraph The compiled state graph.
CompiledStateGraph
¶
Bases:
stream_mode: StreamMode = stream_mode
class-attribute
instance-attribute
¶
Mode to stream output, defaults to 'values'.
stream_channels: Optional[Union[str, Sequence[str]]] = stream_channels
class-attribute
instance-attribute
¶
Channels to stream, defaults to all channels not in reserved channels
step_timeout: Optional[float] = step_timeout
class-attribute
instance-attribute
¶
Maximum time to wait for a step to complete, in seconds. Defaults to None.
debug: bool = debug if debug is not None else get_debug()
instance-attribute
¶
Whether to print debug information during execution. Defaults to False.
checkpointer: Checkpointer = checkpointer
class-attribute
instance-attribute
¶
Checkpointer used to save and load graph state. Defaults to None.
store: Optional[BaseStore] = store
class-attribute
instance-attribute
¶
Memory store to use for SharedValues. Defaults to None.
retry_policy: Optional[RetryPolicy] = retry_policy
class-attribute
instance-attribute
¶
Retry policy to use when running tasks. Set to None to disable.
get_graph(config: Optional[RunnableConfig] = None, *, xray: Union[int, bool] = False) -> DrawableGraph
¶
Returns a drawable representation of the computation graph.
get_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot
¶
Get the current state of the graph.
aget_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot
async
¶
Get the current state of the graph.
update_state(config: RunnableConfig, values: Optional[Union[dict[str, Any], Any]], as_node: Optional[str] = None) -> RunnableConfig
¶
Update the state of the graph with the given values, as if they came from
node as_node
. If as_node
is not provided, it will be set to the last node
that updated the state, if not ambiguous.
aupdate_state(config: RunnableConfig, values: dict[str, Any] | Any, as_node: Optional[str] = None) -> RunnableConfig
async
¶
Update the state of the graph asynchronously with the given values, as if they came from
node as_node
. If as_node
is not provided, it will be set to the last node
that updated the state, if not ambiguous.
stream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> Iterator[Union[dict[str, Any], Any]]
¶
Stream graph steps for a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input to the graph.
-
config
(
, default:Optional [RunnableConfig ]None
) –The configuration to use for the run.
-
stream_mode
(
, default:Optional [Union [StreamMode ,list [StreamMode ]]]None
) –The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –The keys to stream, defaults to all non-context channels.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt before, defaults to all nodes in the graph.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt after, defaults to all nodes in the graph.
-
debug
(
, default:Optional [bool ]None
) –Whether to print debug information during execution, defaults to False.
-
subgraphs
(
, default:bool False
) –Whether to stream subgraphs, defaults to False.
Yields:
-
–Union [dict [str ,Any ],Any ]The output of each step in the graph. The output shape depends on the stream_mode.
Examples:
Using different stream modes with a graph:
>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
... alist: Annotated[list, operator.add]
... another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
>>> for event in graph.stream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
... print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
>>> for event in graph.stream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
... print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
>>> for event in graph.stream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
... print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}
astream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> AsyncIterator[Union[dict[str, Any], Any]]
async
¶
Stream graph steps for a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input to the graph.
-
config
(
, default:Optional [RunnableConfig ]None
) –The configuration to use for the run.
-
stream_mode
(
, default:Optional [Union [StreamMode ,list [StreamMode ]]]None
) –The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –The keys to stream, defaults to all non-context channels.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt before, defaults to all nodes in the graph.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Nodes to interrupt after, defaults to all nodes in the graph.
-
debug
(
, default:Optional [bool ]None
) –Whether to print debug information during execution, defaults to False.
-
subgraphs
(
, default:bool False
) –Whether to stream subgraphs, defaults to False.
Yields:
-
–AsyncIterator [Union [dict [str ,Any ],Any ]]The output of each step in the graph. The output shape depends on the stream_mode.
Examples:
Using different stream modes with a graph:
>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
... alist: Annotated[list, operator.add]
... another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
... print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
... print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
>>> async for event in graph.astream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
... print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}
invoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]
¶
Run the graph with a single input and config.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input data for the graph. It can be a dictionary or any other type.
-
config
(
, default:Optional [RunnableConfig ]None
) –Optional. The configuration for the graph run.
-
stream_mode
(
, default:StreamMode 'values'
) –Optional[str]. The stream mode for the graph run. Default is "values".
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –Optional. The output keys to retrieve from the graph run.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt the graph run before.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt the graph run after.
-
debug
(
, default:Optional [bool ]None
) –Optional. Enable debug mode for the graph run.
-
**kwargs
(
, default:Any {}
) –Additional keyword arguments to pass to the graph run.
Returns:
-
–Union [dict [str ,Any ],Any ]The output of the graph run. If stream_mode is "values", it returns the latest output.
-
–Union [dict [str ,Any ],Any ]If stream_mode is not "values", it returns a list of output chunks.
ainvoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]
async
¶
Asynchronously invoke the graph on a single input.
Parameters:
-
input
(
) –Union [dict [str ,Any ],Any ]The input data for the computation. It can be a dictionary or any other type.
-
config
(
, default:Optional [RunnableConfig ]None
) –Optional. The configuration for the computation.
-
stream_mode
(
, default:StreamMode 'values'
) –Optional. The stream mode for the computation. Default is "values".
-
output_keys
(
, default:Optional [Union [str ,Sequence [str ]]]None
) –Optional. The output keys to include in the result. Default is None.
-
interrupt_before
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt before. Default is None.
-
interrupt_after
(
, default:Optional [Union [All ,Sequence [str ]]]None
) –Optional. The nodes to interrupt after. Default is None.
-
debug
(
, default:Optional [bool ]None
) –Optional. Whether to enable debug mode. Default is None.
-
**kwargs
(
, default:Any {}
) –Additional keyword arguments.
Returns:
-
–Union [dict [str ,Any ],Any ]The result of the computation. If stream_mode is "values", it returns the latest value.
-
–Union [dict [str ,Any ],Any ]If stream_mode is "chunks", it returns a list of chunks.
add_messages(left: Messages, right: Messages, *, format: Optional[Literal['langchain-openai']] = None) -> Messages
¶
Merges two lists of messages, updating existing messages by ID.
By default, this ensures the state is "append-only", unless the new message has the same ID as an existing message.
Parameters:
-
left
(
) –Messages The base list of messages.
-
right
(
) –Messages The list of messages (or single message) to merge into the base list.
-
format
(
, default:Optional [Literal ['langchain-openai']]None
) –The format to return messages in. If None then messages will be returned as is. If 'langchain-openai' then messages will be returned as BaseMessage objects with their contents formatted to match OpenAI message format, meaning contents can be string, 'text' blocks, or 'image_url' blocks and tool responses are returned as their own ToolMessages.
REQUIREMENT: Must have
langchain-core>=0.3.11
installed to use this feature.
Returns:
-
–Messages A new list of messages with the messages from
right
merged intoleft
. -
–Messages If a message in
right
has the same ID as a message inleft
, the -
–Messages message from
right
will replace the message fromleft
.
Examples:
>>> from langchain_core.messages import AIMessage, HumanMessage
>>> msgs1 = [HumanMessage(content="Hello", id="1")]
>>> msgs2 = [AIMessage(content="Hi there!", id="2")]
>>> add_messages(msgs1, msgs2)
[HumanMessage(content='Hello', id='1'), AIMessage(content='Hi there!', id='2')]
>>> msgs1 = [HumanMessage(content="Hello", id="1")]
>>> msgs2 = [HumanMessage(content="Hello again", id="1")]
>>> add_messages(msgs1, msgs2)
[HumanMessage(content='Hello again', id='1')]
>>> from typing import Annotated
>>> from typing_extensions import TypedDict
>>> from langgraph.graph import StateGraph
>>>
>>> class State(TypedDict):
... messages: Annotated[list, add_messages]
...
>>> builder = StateGraph(State)
>>> builder.add_node("chatbot", lambda state: {"messages": [("assistant", "Hello")]})
>>> builder.set_entry_point("chatbot")
>>> builder.set_finish_point("chatbot")
>>> graph = builder.compile()
>>> graph.invoke({})
{'messages': [AIMessage(content='Hello', id=...)]}
>>> from typing import Annotated
>>> from typing_extensions import TypedDict
>>> from langgraph.graph import StateGraph, add_messages
>>>
>>> class State(TypedDict):
... messages: Annotated[list, add_messages(format='langchain-openai')]
...
>>> def chatbot_node(state: State) -> list:
... return {"messages": [
... {
... "role": "user",
... "content": [
... {
... "type": "text",
... "text": "Here's an image:",
... "cache_control": {"type": "ephemeral"},
... },
... {
... "type": "image",
... "source": {
... "type": "base64",
... "media_type": "image/jpeg",
... "data": "1234",
... },
... },
... ]
... },
... ]}
>>> builder = StateGraph(State)
>>> builder.add_node("chatbot", chatbot_node)
>>> builder.set_entry_point("chatbot")
>>> builder.set_finish_point("chatbot")
>>> graph = builder.compile()
>>> graph.invoke({"messages": []})
{
'messages': [
HumanMessage(
content=[
{"type": "text", "text": "Here's an image:"},
{
"type": "image_url",
"image_url": {"url": ""},
},
],
),
]
}
..versionchanged:: 0.2.61
Support for 'format="langchain-openai"' flag added.