Skip to content

Graph Definitions

Graph

add_conditional_edges(source: str, path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self

Add a conditional edge from the starting node to any number of destination nodes.

Parameters:

  • source (str) –

    The starting node. This conditional edge will run when exiting this node.

  • path (Union[Callable, Runnable]) –

    The callable that determines the next node or nodes. If not specifying path_map it should return one or more nodes. If it returns END, the graph will stop execution.

  • path_map (Optional[dict[Hashable, str]], default: None ) –

    Optional mapping of paths to node names. If omitted the paths returned by path should be node names.

  • then (Optional[str], default: None ) –

    The name of a node to execute after the nodes selected by path.

Returns:

  • Self

    None

Without typehints on the path function's return value (e.g., -> Literal["foo", "__end__"]:)

or a path_map, the graph visualization assumes the edge could transition to any node in the graph.

set_entry_point(key: str) -> Self

Specifies the first node to be called in the graph.

Equivalent to calling add_edge(START, key).

Parameters:

  • key (str) –

    The key of the node to set as the entry point.

Returns:

  • Self

    None

set_conditional_entry_point(path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self

Sets a conditional entry point in the graph.

Parameters:

  • path (Union[Callable, Runnable]) –

    The callable that determines the next node or nodes. If not specifying path_map it should return one or more nodes. If it returns END, the graph will stop execution.

  • path_map (Optional[dict[str, str]], default: None ) –

    Optional mapping of paths to node names. If omitted the paths returned by path should be node names.

  • then (Optional[str], default: None ) –

    The name of a node to execute after the nodes selected by path.

Returns:

  • Self

    None

set_finish_point(key: str) -> Self

Marks a node as a finish point of the graph.

If the graph reaches this node, it will cease execution.

Parameters:

  • key (str) –

    The key of the node to set as the finish point.

Returns:

  • Self

    None

CompiledGraph

Bases: Pregel

stream_mode: StreamMode = stream_mode class-attribute instance-attribute

Mode to stream output, defaults to 'values'.

stream_channels: Optional[Union[str, Sequence[str]]] = stream_channels class-attribute instance-attribute

Channels to stream, defaults to all channels not in reserved channels

step_timeout: Optional[float] = step_timeout class-attribute instance-attribute

Maximum time to wait for a step to complete, in seconds. Defaults to None.

debug: bool = debug if debug is not None else get_debug() instance-attribute

Whether to print debug information during execution. Defaults to False.

checkpointer: Checkpointer = checkpointer class-attribute instance-attribute

Checkpointer used to save and load graph state. Defaults to None.

store: Optional[BaseStore] = store class-attribute instance-attribute

Memory store to use for SharedValues. Defaults to None.

retry_policy: Optional[RetryPolicy] = retry_policy class-attribute instance-attribute

Retry policy to use when running tasks. Set to None to disable.

get_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot

Get the current state of the graph.

aget_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot async

Get the current state of the graph.

update_state(config: RunnableConfig, values: Optional[Union[dict[str, Any], Any]], as_node: Optional[str] = None) -> RunnableConfig

Update the state of the graph with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

aupdate_state(config: RunnableConfig, values: dict[str, Any] | Any, as_node: Optional[str] = None) -> RunnableConfig async

Update the state of the graph asynchronously with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

stream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> Iterator[Union[dict[str, Any], Any]]

Stream graph steps for a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input to the graph.

  • config (Optional[RunnableConfig], default: None ) –

    The configuration to use for the run.

  • stream_mode (Optional[Union[StreamMode, list[StreamMode]]], default: None ) –

    The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    The keys to stream, defaults to all non-context channels.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt before, defaults to all nodes in the graph.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt after, defaults to all nodes in the graph.

  • debug (Optional[bool], default: None ) –

    Whether to print debug information during execution, defaults to False.

  • subgraphs (bool, default: False ) –

    Whether to stream subgraphs, defaults to False.

Yields:

  • Union[dict[str, Any], Any]

    The output of each step in the graph. The output shape depends on the stream_mode.

Examples:

Using different stream modes with a graph:

>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
...     alist: Annotated[list, operator.add]
...     another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
With stream_mode="values":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
...     print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
With stream_mode="updates":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
...     print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
With stream_mode="debug":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
...     print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}

astream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> AsyncIterator[Union[dict[str, Any], Any]] async

Stream graph steps for a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input to the graph.

  • config (Optional[RunnableConfig], default: None ) –

    The configuration to use for the run.

  • stream_mode (Optional[Union[StreamMode, list[StreamMode]]], default: None ) –

    The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    The keys to stream, defaults to all non-context channels.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt before, defaults to all nodes in the graph.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt after, defaults to all nodes in the graph.

  • debug (Optional[bool], default: None ) –

    Whether to print debug information during execution, defaults to False.

  • subgraphs (bool, default: False ) –

    Whether to stream subgraphs, defaults to False.

Yields:

  • AsyncIterator[Union[dict[str, Any], Any]]

    The output of each step in the graph. The output shape depends on the stream_mode.

Examples:

Using different stream modes with a graph:

>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
...     alist: Annotated[list, operator.add]
...     another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
With stream_mode="values":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
...     print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
With stream_mode="updates":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
...     print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
With stream_mode="debug":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
...     print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}

invoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]

Run the graph with a single input and config.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input data for the graph. It can be a dictionary or any other type.

  • config (Optional[RunnableConfig], default: None ) –

    Optional. The configuration for the graph run.

  • stream_mode (StreamMode, default: 'values' ) –

    Optional[str]. The stream mode for the graph run. Default is "values".

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional. The output keys to retrieve from the graph run.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt the graph run before.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt the graph run after.

  • debug (Optional[bool], default: None ) –

    Optional. Enable debug mode for the graph run.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments to pass to the graph run.

Returns:

  • Union[dict[str, Any], Any]

    The output of the graph run. If stream_mode is "values", it returns the latest output.

  • Union[dict[str, Any], Any]

    If stream_mode is not "values", it returns a list of output chunks.

ainvoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any] async

Asynchronously invoke the graph on a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input data for the computation. It can be a dictionary or any other type.

  • config (Optional[RunnableConfig], default: None ) –

    Optional. The configuration for the computation.

  • stream_mode (StreamMode, default: 'values' ) –

    Optional. The stream mode for the computation. Default is "values".

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional. The output keys to include in the result. Default is None.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt before. Default is None.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt after. Default is None.

  • debug (Optional[bool], default: None ) –

    Optional. Whether to enable debug mode. Default is None.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments.

Returns:

  • Union[dict[str, Any], Any]

    The result of the computation. If stream_mode is "values", it returns the latest value.

  • Union[dict[str, Any], Any]

    If stream_mode is "chunks", it returns a list of chunks.

get_graph(config: Optional[RunnableConfig] = None, *, xray: Union[int, bool] = False) -> DrawableGraph

Returns a drawable representation of the computation graph.

StateGraph

Bases: Graph

A graph whose nodes communicate by reading and writing to a shared state. The signature of each node is State -> Partial.

Each state key can optionally be annotated with a reducer function that will be used to aggregate the values of that key received from multiple nodes. The signature of a reducer function is (Value, Value) -> Value.

Parameters:

  • state_schema (Type[Any], default: None ) –

    The schema class that defines the state.

  • config_schema (Optional[Type[Any]], default: None ) –

    The schema class that defines the configuration. Use this to expose configurable parameters in your API.

Examples:

>>> from langchain_core.runnables import RunnableConfig
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.checkpoint.memory import MemorySaver
>>> from langgraph.graph import StateGraph
>>>
>>> def reducer(a: list, b: int | None) -> list:
...     if b is not None:
...         return a + [b]
...     return a
>>>
>>> class State(TypedDict):
...     x: Annotated[list, reducer]
>>>
>>> class ConfigSchema(TypedDict):
...     r: float
>>>
>>> graph = StateGraph(State, config_schema=ConfigSchema)
>>>
>>> def node(state: State, config: RunnableConfig) -> dict:
...     r = config["configurable"].get("r", 1.0)
...     x = state["x"][-1]
...     next_value = x * r * (1 - x)
...     return {"x": next_value}
>>>
>>> graph.add_node("A", node)
>>> graph.set_entry_point("A")
>>> graph.set_finish_point("A")
>>> compiled = graph.compile()
>>>
>>> print(compiled.config_specs)
[ConfigurableFieldSpec(id='r', annotation=<class 'float'>, name=None, description=None, default=None, is_shared=False, dependencies=None)]
>>>
>>> step1 = compiled.invoke({"x": 0.5}, {"configurable": {"r": 3.0}})
>>> print(step1)
{'x': [0.5, 0.75]}

add_conditional_edges(source: str, path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self

Add a conditional edge from the starting node to any number of destination nodes.

Parameters:

  • source (str) –

    The starting node. This conditional edge will run when exiting this node.

  • path (Union[Callable, Runnable]) –

    The callable that determines the next node or nodes. If not specifying path_map it should return one or more nodes. If it returns END, the graph will stop execution.

  • path_map (Optional[dict[Hashable, str]], default: None ) –

    Optional mapping of paths to node names. If omitted the paths returned by path should be node names.

  • then (Optional[str], default: None ) –

    The name of a node to execute after the nodes selected by path.

Returns:

  • Self

    None

Without typehints on the path function's return value (e.g., -> Literal["foo", "__end__"]:)

or a path_map, the graph visualization assumes the edge could transition to any node in the graph.

set_entry_point(key: str) -> Self

Specifies the first node to be called in the graph.

Equivalent to calling add_edge(START, key).

Parameters:

  • key (str) –

    The key of the node to set as the entry point.

Returns:

  • Self

    None

set_conditional_entry_point(path: Union[Callable[..., Union[Hashable, list[Hashable]]], Callable[..., Awaitable[Union[Hashable, list[Hashable]]]], Runnable[Any, Union[Hashable, list[Hashable]]]], path_map: Optional[Union[dict[Hashable, str], list[str]]] = None, then: Optional[str] = None) -> Self

Sets a conditional entry point in the graph.

Parameters:

  • path (Union[Callable, Runnable]) –

    The callable that determines the next node or nodes. If not specifying path_map it should return one or more nodes. If it returns END, the graph will stop execution.

  • path_map (Optional[dict[str, str]], default: None ) –

    Optional mapping of paths to node names. If omitted the paths returned by path should be node names.

  • then (Optional[str], default: None ) –

    The name of a node to execute after the nodes selected by path.

Returns:

  • Self

    None

set_finish_point(key: str) -> Self

Marks a node as a finish point of the graph.

If the graph reaches this node, it will cease execution.

Parameters:

  • key (str) –

    The key of the node to set as the finish point.

Returns:

  • Self

    None

add_node(node: Union[str, RunnableLike], action: Optional[RunnableLike] = None, *, metadata: Optional[dict[str, Any]] = None, input: Optional[Type[Any]] = None, retry: Optional[RetryPolicy] = None) -> Self

Adds a new node to the state graph.

Will take the name of the function/runnable as the node name.

Parameters:

  • node (Union[str, RunnableLike)]) –

    The function or runnable this node will run.

  • action (Optional[RunnableLike], default: None ) –

    The action associated with the node. (default: None)

  • metadata (Optional[dict[str, Any]], default: None ) –

    The metadata associated with the node. (default: None)

  • input (Optional[Type[Any]], default: None ) –

    The input schema for the node. (default: the graph's input schema)

  • retry (Optional[RetryPolicy], default: None ) –

    The policy for retrying the node. (default: None)

Raises: ValueError: If the key is already being used as a state key.

Examples:

>>> from langgraph.graph import START, StateGraph
...
>>> def my_node(state, config):
...    return {"x": state["x"] + 1}
...
>>> builder = StateGraph(dict)
>>> builder.add_node(my_node)  # node name will be 'my_node'
>>> builder.add_edge(START, "my_node")
>>> graph = builder.compile()
>>> graph.invoke({"x": 1})
{'x': 2}
Customize the name:

>>> builder = StateGraph(dict)
>>> builder.add_node("my_fair_node", my_node)
>>> builder.add_edge(START, "my_fair_node")
>>> graph = builder.compile()
>>> graph.invoke({"x": 1})
{'x': 2}

Returns:

  • Self

    StateGraph

add_edge(start_key: Union[str, list[str]], end_key: str) -> Self

Adds a directed edge from the start node to the end node.

If the graph transitions to the start_key node, it will always transition to the end_key node next.

Parameters:

  • start_key (Union[str, list[str]]) –

    The key(s) of the start node(s) of the edge.

  • end_key (str) –

    The key of the end node of the edge.

Raises:

  • ValueError

    If the start key is 'END' or if the start key or end key is not present in the graph.

Returns:

  • Self

    StateGraph

add_sequence(nodes: Sequence[Union[RunnableLike, tuple[str, RunnableLike]]]) -> Self

Add a sequence of nodes that will be executed in the provided order.

Parameters:

  • nodes (Sequence[Union[RunnableLike, tuple[str, RunnableLike]]]) –

    A sequence of RunnableLike objects (e.g. a LangChain Runnable or a callable) or (name, RunnableLike) tuples. If no names are provided, the name will be inferred from the node object (e.g. a runnable or a callable name). Each node will be executed in the order provided.

Raises:

  • ValueError

    if the sequence is empty.

  • ValueError

    if the sequence contains duplicate node names.

Returns:

  • Self

    StateGraph

compile(checkpointer: Checkpointer = None, *, store: Optional[BaseStore] = None, interrupt_before: Optional[Union[All, list[str]]] = None, interrupt_after: Optional[Union[All, list[str]]] = None, debug: bool = False) -> CompiledStateGraph

Compiles the state graph into a CompiledGraph object.

The compiled graph implements the Runnable interface and can be invoked, streamed, batched, and run asynchronously.

Parameters:

  • checkpointer (Optional[Union[Checkpointer, Literal[False]]], default: None ) –

    A checkpoint saver object or flag. If provided, this Checkpointer serves as a fully versioned "short-term memory" for the graph, allowing it to be paused, resumed, and replayed from any point. If None, it may inherit the parent graph's checkpointer when used as a subgraph. If False, it will not use or inherit any checkpointer.

  • interrupt_before (Optional[Sequence[str]], default: None ) –

    An optional list of node names to interrupt before.

  • interrupt_after (Optional[Sequence[str]], default: None ) –

    An optional list of node names to interrupt after.

  • debug (bool, default: False ) –

    A flag indicating whether to enable debug mode.

Returns:

  • CompiledStateGraph ( CompiledStateGraph ) –

    The compiled state graph.

CompiledStateGraph

Bases: CompiledGraph

stream_mode: StreamMode = stream_mode class-attribute instance-attribute

Mode to stream output, defaults to 'values'.

stream_channels: Optional[Union[str, Sequence[str]]] = stream_channels class-attribute instance-attribute

Channels to stream, defaults to all channels not in reserved channels

step_timeout: Optional[float] = step_timeout class-attribute instance-attribute

Maximum time to wait for a step to complete, in seconds. Defaults to None.

debug: bool = debug if debug is not None else get_debug() instance-attribute

Whether to print debug information during execution. Defaults to False.

checkpointer: Checkpointer = checkpointer class-attribute instance-attribute

Checkpointer used to save and load graph state. Defaults to None.

store: Optional[BaseStore] = store class-attribute instance-attribute

Memory store to use for SharedValues. Defaults to None.

retry_policy: Optional[RetryPolicy] = retry_policy class-attribute instance-attribute

Retry policy to use when running tasks. Set to None to disable.

get_graph(config: Optional[RunnableConfig] = None, *, xray: Union[int, bool] = False) -> DrawableGraph

Returns a drawable representation of the computation graph.

get_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot

Get the current state of the graph.

aget_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot async

Get the current state of the graph.

update_state(config: RunnableConfig, values: Optional[Union[dict[str, Any], Any]], as_node: Optional[str] = None) -> RunnableConfig

Update the state of the graph with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

aupdate_state(config: RunnableConfig, values: dict[str, Any] | Any, as_node: Optional[str] = None) -> RunnableConfig async

Update the state of the graph asynchronously with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

stream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> Iterator[Union[dict[str, Any], Any]]

Stream graph steps for a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input to the graph.

  • config (Optional[RunnableConfig], default: None ) –

    The configuration to use for the run.

  • stream_mode (Optional[Union[StreamMode, list[StreamMode]]], default: None ) –

    The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    The keys to stream, defaults to all non-context channels.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt before, defaults to all nodes in the graph.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt after, defaults to all nodes in the graph.

  • debug (Optional[bool], default: None ) –

    Whether to print debug information during execution, defaults to False.

  • subgraphs (bool, default: False ) –

    Whether to stream subgraphs, defaults to False.

Yields:

  • Union[dict[str, Any], Any]

    The output of each step in the graph. The output shape depends on the stream_mode.

Examples:

Using different stream modes with a graph:

>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
...     alist: Annotated[list, operator.add]
...     another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
With stream_mode="values":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
...     print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
With stream_mode="updates":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
...     print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
With stream_mode="debug":

>>> for event in graph.stream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
...     print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}

astream(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: Optional[Union[StreamMode, list[StreamMode]]] = None, output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, subgraphs: bool = False) -> AsyncIterator[Union[dict[str, Any], Any]] async

Stream graph steps for a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input to the graph.

  • config (Optional[RunnableConfig], default: None ) –

    The configuration to use for the run.

  • stream_mode (Optional[Union[StreamMode, list[StreamMode]]], default: None ) –

    The mode to stream output, defaults to self.stream_mode. Options are 'values', 'updates', and 'debug'. values: Emit the current values of the state for each step. updates: Emit only the updates to the state for each step. Output is a dict with the node name as key and the updated values as value. debug: Emit debug events for each step.

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    The keys to stream, defaults to all non-context channels.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt before, defaults to all nodes in the graph.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Nodes to interrupt after, defaults to all nodes in the graph.

  • debug (Optional[bool], default: None ) –

    Whether to print debug information during execution, defaults to False.

  • subgraphs (bool, default: False ) –

    Whether to stream subgraphs, defaults to False.

Yields:

  • AsyncIterator[Union[dict[str, Any], Any]]

    The output of each step in the graph. The output shape depends on the stream_mode.

Examples:

Using different stream modes with a graph:

>>> import operator
>>> from typing_extensions import Annotated, TypedDict
>>> from langgraph.graph import StateGraph
>>> from langgraph.constants import START
...
>>> class State(TypedDict):
...     alist: Annotated[list, operator.add]
...     another_list: Annotated[list, operator.add]
...
>>> builder = StateGraph(State)
>>> builder.add_node("a", lambda _state: {"another_list": ["hi"]})
>>> builder.add_node("b", lambda _state: {"alist": ["there"]})
>>> builder.add_edge("a", "b")
>>> builder.add_edge(START, "a")
>>> graph = builder.compile()
With stream_mode="values":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="values"']}, stream_mode="values"):
...     print(event)
{'alist': ['Ex for stream_mode="values"'], 'another_list': []}
{'alist': ['Ex for stream_mode="values"'], 'another_list': ['hi']}
{'alist': ['Ex for stream_mode="values"', 'there'], 'another_list': ['hi']}
With stream_mode="updates":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="updates"']}, stream_mode="updates"):
...     print(event)
{'a': {'another_list': ['hi']}}
{'b': {'alist': ['there']}}
With stream_mode="debug":

>>> async for event in graph.astream({"alist": ['Ex for stream_mode="debug"']}, stream_mode="debug"):
...     print(event)
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': []}, 'triggers': ['start:a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 1, 'payload': {'id': '...', 'name': 'a', 'result': [('another_list', ['hi'])]}}
{'type': 'task', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'input': {'alist': ['Ex for stream_mode="debug"'], 'another_list': ['hi']}, 'triggers': ['a']}}
{'type': 'task_result', 'timestamp': '2024-06-23T...+00:00', 'step': 2, 'payload': {'id': '...', 'name': 'b', 'result': [('alist', ['there'])]}}

invoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any]

Run the graph with a single input and config.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input data for the graph. It can be a dictionary or any other type.

  • config (Optional[RunnableConfig], default: None ) –

    Optional. The configuration for the graph run.

  • stream_mode (StreamMode, default: 'values' ) –

    Optional[str]. The stream mode for the graph run. Default is "values".

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional. The output keys to retrieve from the graph run.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt the graph run before.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt the graph run after.

  • debug (Optional[bool], default: None ) –

    Optional. Enable debug mode for the graph run.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments to pass to the graph run.

Returns:

  • Union[dict[str, Any], Any]

    The output of the graph run. If stream_mode is "values", it returns the latest output.

  • Union[dict[str, Any], Any]

    If stream_mode is not "values", it returns a list of output chunks.

ainvoke(input: Union[dict[str, Any], Any], config: Optional[RunnableConfig] = None, *, stream_mode: StreamMode = 'values', output_keys: Optional[Union[str, Sequence[str]]] = None, interrupt_before: Optional[Union[All, Sequence[str]]] = None, interrupt_after: Optional[Union[All, Sequence[str]]] = None, debug: Optional[bool] = None, **kwargs: Any) -> Union[dict[str, Any], Any] async

Asynchronously invoke the graph on a single input.

Parameters:

  • input (Union[dict[str, Any], Any]) –

    The input data for the computation. It can be a dictionary or any other type.

  • config (Optional[RunnableConfig], default: None ) –

    Optional. The configuration for the computation.

  • stream_mode (StreamMode, default: 'values' ) –

    Optional. The stream mode for the computation. Default is "values".

  • output_keys (Optional[Union[str, Sequence[str]]], default: None ) –

    Optional. The output keys to include in the result. Default is None.

  • interrupt_before (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt before. Default is None.

  • interrupt_after (Optional[Union[All, Sequence[str]]], default: None ) –

    Optional. The nodes to interrupt after. Default is None.

  • debug (Optional[bool], default: None ) –

    Optional. Whether to enable debug mode. Default is None.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments.

Returns:

  • Union[dict[str, Any], Any]

    The result of the computation. If stream_mode is "values", it returns the latest value.

  • Union[dict[str, Any], Any]

    If stream_mode is "chunks", it returns a list of chunks.

add_messages(left: Messages, right: Messages, *, format: Optional[Literal['langchain-openai']] = None) -> Messages

Merges two lists of messages, updating existing messages by ID.

By default, this ensures the state is "append-only", unless the new message has the same ID as an existing message.

Parameters:

  • left (Messages) –

    The base list of messages.

  • right (Messages) –

    The list of messages (or single message) to merge into the base list.

  • format (Optional[Literal['langchain-openai']], default: None ) –

    The format to return messages in. If None then messages will be returned as is. If 'langchain-openai' then messages will be returned as BaseMessage objects with their contents formatted to match OpenAI message format, meaning contents can be string, 'text' blocks, or 'image_url' blocks and tool responses are returned as their own ToolMessages.

    REQUIREMENT: Must have langchain-core>=0.3.11 installed to use this feature.

Returns:

  • Messages

    A new list of messages with the messages from right merged into left.

  • Messages

    If a message in right has the same ID as a message in left, the

  • Messages

    message from right will replace the message from left.

Examples:

>>> from langchain_core.messages import AIMessage, HumanMessage
>>> msgs1 = [HumanMessage(content="Hello", id="1")]
>>> msgs2 = [AIMessage(content="Hi there!", id="2")]
>>> add_messages(msgs1, msgs2)
[HumanMessage(content='Hello', id='1'), AIMessage(content='Hi there!', id='2')]

>>> msgs1 = [HumanMessage(content="Hello", id="1")]
>>> msgs2 = [HumanMessage(content="Hello again", id="1")]
>>> add_messages(msgs1, msgs2)
[HumanMessage(content='Hello again', id='1')]

>>> from typing import Annotated
>>> from typing_extensions import TypedDict
>>> from langgraph.graph import StateGraph
>>>
>>> class State(TypedDict):
...     messages: Annotated[list, add_messages]
...
>>> builder = StateGraph(State)
>>> builder.add_node("chatbot", lambda state: {"messages": [("assistant", "Hello")]})
>>> builder.set_entry_point("chatbot")
>>> builder.set_finish_point("chatbot")
>>> graph = builder.compile()
>>> graph.invoke({})
{'messages': [AIMessage(content='Hello', id=...)]}

>>> from typing import Annotated
>>> from typing_extensions import TypedDict
>>> from langgraph.graph import StateGraph, add_messages
>>>
>>> class State(TypedDict):
...     messages: Annotated[list, add_messages(format='langchain-openai')]
...
>>> def chatbot_node(state: State) -> list:
...     return {"messages": [
...         {
...             "role": "user",
...             "content": [
...                 {
...                     "type": "text",
...                     "text": "Here's an image:",
...                     "cache_control": {"type": "ephemeral"},
...                 },
...                 {
...                     "type": "image",
...                     "source": {
...                         "type": "base64",
...                         "media_type": "image/jpeg",
...                         "data": "1234",
...                     },
...                 },
...             ]
...         },
...     ]}
>>> builder = StateGraph(State)
>>> builder.add_node("chatbot", chatbot_node)
>>> builder.set_entry_point("chatbot")
>>> builder.set_finish_point("chatbot")
>>> graph = builder.compile()
>>> graph.invoke({"messages": []})
{
    'messages': [
        HumanMessage(
            content=[
                {"type": "text", "text": "Here's an image:"},
                {
                    "type": "image_url",
                    "image_url": {"url": ""},
                },
            ],
        ),
    ]
}

..versionchanged:: 0.2.61

Support for 'format="langchain-openai"' flag added.

Comments