Skip to content

Config

get_store() -> BaseStore

Access LangGraph store from inside a graph node or entrypoint task at runtime.

Can be called from inside any StateGraph node or functional API task, as long as the StateGraph or the entrypoint was initialized with a store, e.g.:

# with StateGraph
graph = (
    StateGraph(...)
    ...
    .compile(store=store)
)

# or with entrypoint
@entrypoint(store=store)
def workflow(inputs):
    ...

Async with Python < 3.11

If you are using Python < 3.11 and are running LangGraph asynchronously, get_store() won't work since it uses contextvar propagation (only available in Python >= 3.11).

Using with StateGraph
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START
from langgraph.store.memory import InMemoryStore
from langgraph.config import get_store

store = InMemoryStore()
store.put(("values",), "foo", {"bar": 2})

class State(TypedDict):
    foo: int

def my_node(state: State):
    my_store = get_store()
    stored_value = my_store.get(("values",), "foo").value["bar"]
    return {"foo": stored_value + 1}

graph = (
    StateGraph(State)
    .add_node(my_node)
    .add_edge(START, "my_node")
    .compile(store=store)
)

graph.invoke({"foo": 1})
{'foo': 3}
Using with functional API
from langgraph.func import entrypoint, task
from langgraph.store.memory import InMemoryStore
from langgraph.config import get_store

store = InMemoryStore()
store.put(("values",), "foo", {"bar": 2})

@task
def my_task(value: int):
    my_store = get_store()
    stored_value = my_store.get(("values",), "foo").value["bar"]
    return stored_value + 1

@entrypoint(store=store)
def workflow(value: int):
    return my_task(value).result()

workflow.invoke(1)
3

get_stream_writer() -> StreamWriter

Access LangGraph StreamWriter from inside a graph node or entrypoint task at runtime.

Can be called from inside any StateGraph node or functional API task.

Async with Python < 3.11

If you are using Python < 3.11 and are running LangGraph asynchronously, get_stream_writer() won't work since it uses contextvar propagation (only available in Python >= 3.11).

Using with StateGraph
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START
from langgraph.config import get_stream_writer

class State(TypedDict):
    foo: int

def my_node(state: State):
    my_stream_writer = get_stream_writer()
    my_stream_writer({"custom_data": "Hello!"})
    return {"foo": state["foo"] + 1}

graph = (
    StateGraph(State)
    .add_node(my_node)
    .add_edge(START, "my_node")
    .compile(store=store)
)

for chunk in graph.stream({"foo": 1}, stream_mode="custom"):
    print(chunk)
{'custom_data': 'Hello!'}
Using with functional API
from langgraph.func import entrypoint, task
from langgraph.config import get_stream_writer

@task
def my_task(value: int):
    my_stream_writer = get_stream_writer()
    my_stream_writer({"custom_data": "Hello!"})
    return value + 1

@entrypoint(store=store)
def workflow(value: int):
    return my_task(value).result()

for chunk in workflow.stream(1, stream_mode="custom"):
    print(chunk)
{'custom_data': 'Hello!'}

Comments