Skip to content

How to stream events from within a tool (without LangChain LLMs / tools)

Prerequisites

This guide assumes familiarity with the following:

In this guide, we will demonstrate how to stream tokens from tools used by a custom ReAct agent, without relying on LangChain’s chat models or tool-calling functionalities.

We will use the OpenAI client library directly for the chat model interaction. The tool execution will be implemented from scratch.

This showcases how LangGraph can be utilized independently of built-in LangChain components like chat models or tools.

Setup

First, let's install the required packages and set our API keys

%%capture --no-stderr
%pip install -U langgraph openai
import getpass
import os


def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("OPENAI_API_KEY")

Set up LangSmith for LangGraph development

Sign up for LangSmith to quickly spot issues and improve the performance of your LangGraph projects. LangSmith lets you use trace data to debug, test, and monitor your LLM apps built with LangGraph — read more about how to get started here.

Define the graph

Define a node that will call OpenAI API

from openai import AsyncOpenAI
from langchain_core.language_models.chat_models import ChatGenerationChunk
from langchain_core.messages import AIMessageChunk
from langchain_core.runnables.config import (
    ensure_config,
    get_callback_manager_for_config,
)

openai_client = AsyncOpenAI()
# define tool schema for openai tool calling

tool = {
    "type": "function",
    "function": {
        "name": "get_items",
        "description": "Use this tool to look up which items are in the given place.",
        "parameters": {
            "type": "object",
            "properties": {"place": {"type": "string"}},
            "required": ["place"],
        },
    },
}


async def call_model(state, config=None):
    config = ensure_config(config | {"tags": ["agent_llm"]})
    callback_manager = get_callback_manager_for_config(config)
    messages = state["messages"]

    llm_run_manager = callback_manager.on_chat_model_start({}, [messages])[0]
    response = await openai_client.chat.completions.create(
        messages=messages, model="gpt-3.5-turbo", tools=[tool], stream=True
    )

    response_content = ""
    role = None

    tool_call_id = None
    tool_call_function_name = None
    tool_call_function_arguments = ""
    async for chunk in response:
        delta = chunk.choices[0].delta
        if delta.role is not None:
            role = delta.role

        if delta.content:
            response_content += delta.content
            llm_run_manager.on_llm_new_token(delta.content)

        if delta.tool_calls:
            # note: for simplicity we're only handling a single tool call here
            if delta.tool_calls[0].function.name is not None:
                tool_call_function_name = delta.tool_calls[0].function.name
                tool_call_id = delta.tool_calls[0].id

            # note: we're wrapping the tools calls in ChatGenerationChunk so that the events from .astream_events in the graph can render tool calls correctly
            tool_call_chunk = ChatGenerationChunk(
                message=AIMessageChunk(
                    content="",
                    additional_kwargs={"tool_calls": [delta.tool_calls[0].dict()]},
                )
            )
            llm_run_manager.on_llm_new_token("", chunk=tool_call_chunk)
            tool_call_function_arguments += delta.tool_calls[0].function.arguments

    if tool_call_function_name is not None:
        tool_calls = [
            {
                "id": tool_call_id,
                "function": {
                    "name": tool_call_function_name,
                    "arguments": tool_call_function_arguments,
                },
                "type": "function",
            }
        ]
    else:
        tool_calls = None

    response_message = {
        "role": role,
        "content": response_content,
        "tool_calls": tool_calls,
    }
    return {"messages": [response_message]}

API Reference: ChatGenerationChunk | AIMessageChunk | ensure_config | get_callback_manager_for_config

Define our tools and a tool-calling node

import json
from langchain_core.callbacks import adispatch_custom_event


async def get_items(place: str) -> str:
    """Use this tool to look up which items are in the given place."""

    # this can be replaced with any actual streaming logic that you might have
    def stream(place: str):
        if "bed" in place:  # For under the bed
            yield from ["socks", "shoes", "dust bunnies"]
        elif "shelf" in place:  # For 'shelf'
            yield from ["books", "penciles", "pictures"]
        else:  # if the agent decides to ask about a different place
            yield "cat snacks"

    tokens = []
    for token in stream(place):
        await adispatch_custom_event(
            # this will allow you to filter events by name
            "tool_call_token_stream",
            {
                "function_name": "get_items",
                "arguments": {"place": place},
                "tool_output_token": token,
            },
            # this will allow you to filter events by tags
            config={"tags": ["tool_call"]},
        )
        tokens.append(token)

    return ", ".join(tokens)


# define mapping to look up functions when running tools
function_name_to_function = {"get_items": get_items}


async def call_tools(state):
    messages = state["messages"]

    tool_call = messages[-1]["tool_calls"][0]
    function_name = tool_call["function"]["name"]
    function_arguments = tool_call["function"]["arguments"]
    arguments = json.loads(function_arguments)

    function_response = await function_name_to_function[function_name](**arguments)
    tool_message = {
        "tool_call_id": tool_call["id"],
        "role": "tool",
        "name": function_name,
        "content": function_response,
    }
    return {"messages": [tool_message]}

API Reference: adispatch_custom_event

Define our graph

import operator
from typing import Annotated, Literal
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, END, START


class State(TypedDict):
    messages: Annotated[list, operator.add]


def should_continue(state) -> Literal["tools", END]:
    messages = state["messages"]
    last_message = messages[-1]
    if last_message["tool_calls"]:
        return "tools"
    return END


workflow = StateGraph(State)
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)  # i.e. our "agent"
workflow.add_node("tools", call_tools)
workflow.add_conditional_edges("model", should_continue)
workflow.add_edge("tools", "model")
graph = workflow.compile()

API Reference: StateGraph | END | START

Stream tokens from within the tool

Here, we'll use the astream_events API to stream back individual events. Please see astream_events for more details.

async for event in graph.astream_events(
    {"messages": [{"role": "user", "content": "what's in the bedroom"}]}, version="v2"
):
    tags = event.get("tags", [])
    if event["event"] == "on_custom_event" and "tool_call" in tags:
        print("Tool token", event["data"]["tool_output_token"])
Tool token socks
Tool token shoes
Tool token dust bunnies

Comments