Skip to content

LangGraph CLI

The LangGraph command line interface includes commands to build and run a LangGraph Cloud API server locally in Docker. For development and testing, you can use the CLI to deploy a local API server.

Installation

  1. Ensure that Docker is installed (e.g. docker --version).
  2. Install the CLI package:

    pip install langgraph-cli
    
    # Install via Homebrew
    brew install langgraph-cli
    
    npx @langchain/langgraph-cli
    
    # Install globally, will be available as `langgraphjs`
    npm install -g @langchain/langgraph-cli
    
  3. Run the command langgraph --help or npx @langchain/langgraph-cli --help to confirm that the CLI is working correctly.

Configuration File

The LangGraph CLI requires a JSON configuration file that follows this schema. It contains the following properties:

Note

The LangGraph CLI defaults to using the configuration file langgraph.json in the current directory.

Key Description
dependencies Required. Array of dependencies for LangGraph Cloud API server. Dependencies can be one of the following:
  • A single period ("."), which will look for local Python packages.
  • The directory path where pyproject.toml, setup.py or requirements.txt is located.

    For example, if requirements.txt is located in the root of the project directory, specify "./". If it's located in a subdirectory called local_package, specify "./local_package". Do not specify the string "requirements.txt" itself.
  • A Python package name.
graphs Required. Mapping from graph ID to path where the compiled graph or a function that makes a graph is defined. Example:
  • ./your_package/your_file.py:variable, where variable is an instance of langgraph.graph.state.CompiledStateGraph
  • ./your_package/your_file.py:make_graph, where make_graph is a function that takes a config dictionary (langchain_core.runnables.RunnableConfig) and creates an instance of langgraph.graph.state.StateGraph / langgraph.graph.state.CompiledStateGraph.
auth (Added in v0.0.11) Auth configuration containing the path to your authentication handler. Example: ./your_package/auth.py:auth, where auth is an instance of langgraph_sdk.Auth. See authentication guide for details.
env Path to .env file or a mapping from environment variable to its value.
store Configuration for adding semantic search and/or time-to-live (TTL) to the BaseStore. Contains the following fields:
  • index (optional): Configuration for semantic search indexing with fields embed, dims, and optional fields.
  • ttl (optional): Configuration for item expiration. An object with optional fields: refresh_on_read (boolean, defaults to true), default_ttl (float, lifespan in minutes, defaults to no expiration), and sweep_interval_minutes (integer, how often to check for expired items, defaults to no sweeping).
python_version 3.11, 3.12, or 3.13. Defaults to 3.11.
node_version Specify node_version: 20 to use LangGraph.js.
pip_config_file Path to pip config file.
dockerfile_lines Array of additional lines to add to Dockerfile following the import from parent image.
checkpointer Configuration for the checkpointer. Contains a ttl field which is an object with the following keys:
  • strategy: How to handle expired checkpoints (e.g., "delete").
  • sweep_interval_minutes: How often to check for expired checkpoints (integer).
  • default_ttl: Default time-to-live for checkpoints in minutes (integer). Defines how long checkpoints are kept before the specified strategy is applied.
http HTTP server configuration with the following fields:
  • app: Path to custom Starlette/FastAPI app (e.g., "./src/agent/webapp.py:app"). See custom routes guide.
  • disable_assistants: Disable /assistants routes
  • disable_threads: Disable /threads routes
  • disable_runs: Disable /runs routes
  • disable_store: Disable /store routes
  • disable_meta: Disable /ok, /info, /metrics, and /docs routes
  • cors: CORS configuration with fields for allow_origins, allow_methods, allow_headers, etc.
Key Description
graphs Required. Mapping from graph ID to path where the compiled graph or a function that makes a graph is defined. Example:
  • ./src/graph.ts:variable, where variable is an instance of CompiledStateGraph
  • ./src/graph.ts:makeGraph, where makeGraph is a function that takes a config dictionary (LangGraphRunnableConfig) and creates an instance of StateGraph / CompiledStateGraph.
env Path to .env file or a mapping from environment variable to its value.
store Configuration for adding semantic search and/or time-to-live (TTL) to the BaseStore. Contains the following fields:
  • index (optional): Configuration for semantic search indexing with fields embed, dims, and optional fields.
  • ttl (optional): Configuration for item expiration. An object with optional fields: refresh_on_read (boolean, defaults to true), default_ttl (float, lifespan in minutes, defaults to no expiration), and sweep_interval_minutes (integer, how often to check for expired items, defaults to no sweeping).
node_version Specify node_version: 20 to use LangGraph.js.
dockerfile_lines Array of additional lines to add to Dockerfile following the import from parent image.
checkpointer Configuration for the checkpointer. Contains a ttl field which is an object with the following keys:
  • strategy: How to handle expired checkpoints (e.g., "delete").
  • sweep_interval_minutes: How often to check for expired checkpoints (integer).
  • default_ttl: Default time-to-live for checkpoints in minutes (integer). Defines how long checkpoints are kept before the specified strategy is applied.

Examples

Basic Configuration

{
  "dependencies": ["."],
  "graphs": {
    "chat": "./chat/graph.py:graph"
  }
}

Adding semantic search to the store

All deployments come with a DB-backed BaseStore. Adding an "index" configuration to your langgraph.json will enable semantic search within the BaseStore of your deployment.

The index.fields configuration determines which parts of your documents to embed:

  • If omitted or set to ["$"], the entire document will be embedded
  • To embed specific fields, use JSON path notation: ["metadata.title", "content.text"]
  • Documents missing specified fields will still be stored but won't have embeddings for those fields
  • You can still override which fields to embed on a specific item at put time using the index parameter
{
  "dependencies": ["."],
  "graphs": {
    "memory_agent": "./agent/graph.py:graph"
  },
  "store": {
    "index": {
      "embed": "openai:text-embedding-3-small",
      "dims": 1536,
      "fields": ["$"]
    }
  }
}

Common model dimensions

  • openai:text-embedding-3-large: 3072
  • openai:text-embedding-3-small: 1536
  • openai:text-embedding-ada-002: 1536
  • cohere:embed-english-v3.0: 1024
  • cohere:embed-english-light-v3.0: 384
  • cohere:embed-multilingual-v3.0: 1024
  • cohere:embed-multilingual-light-v3.0: 384

Semantic search with a custom embedding function

If you want to use semantic search with a custom embedding function, you can pass a path to a custom embedding function:

{
  "dependencies": ["."],
  "graphs": {
    "memory_agent": "./agent/graph.py:graph"
  },
  "store": {
    "index": {
      "embed": "./embeddings.py:embed_texts",
      "dims": 768,
      "fields": ["text", "summary"]
    }
  }
}

The embed field in store configuration can reference a custom function that takes a list of strings and returns a list of embeddings. Example implementation:

# embeddings.py
def embed_texts(texts: list[str]) -> list[list[float]]:
    """Custom embedding function for semantic search."""
    # Implementation using your preferred embedding model
    return [[0.1, 0.2, ...] for _ in texts]  # dims-dimensional vectors

Adding custom authentication

{
  "dependencies": ["."],
  "graphs": {
    "chat": "./chat/graph.py:graph"
  },
  "auth": {
    "path": "./auth.py:auth",
    "openapi": {
      "securitySchemes": {
        "apiKeyAuth": {
          "type": "apiKey",
          "in": "header",
          "name": "X-API-Key"
        }
      },
      "security": [{ "apiKeyAuth": [] }]
    },
    "disable_studio_auth": false
  }
}

See the authentication conceptual guide for details, and the setting up custom authentication guide for a practical walk through of the process.

Configuring Store Item Time-to-Live (TTL)

You can configure default data expiration for items/memories in the BaseStore using the store.ttl key. This determines how long items are retained after they are last accessed (with reads potentially refreshing the timer based on refresh_on_read). Note that these defaults can be overwritten on a per-call basis by modifying the corresponding arguments in get, search, etc.

The ttl configuration is an object containing optional fields:

  • refresh_on_read: If true (the default), accessing an item via get or search resets its expiration timer. Set to false to only refresh TTL on writes (put).
  • default_ttl: The default lifespan of an item in minutes. If not set, items do not expire by default.
  • sweep_interval_minutes: How frequently (in minutes) the system should run a background process to delete expired items. If not set, sweeping does not occur automatically.

Here is an example enabling a 7-day TTL (10080 minutes), refreshing on reads, and sweeping every hour:

{
  "dependencies": ["."],
  "graphs": {
    "memory_agent": "./agent/graph.py:graph"
  },
  "store": {
    "ttl": {
      "refresh_on_read": true,
      "sweep_interval_minutes": 60,
      "default_ttl": 10080 
    }
  }
}

Configuring Checkpoint Time-to-Live (TTL)

You can configure the time-to-live (TTL) for checkpoints using the checkpointer key. This determines how long checkpoint data is retained before being automatically handled according to the specified strategy (e.g., deletion). The ttl configuration is an object containing:

  • strategy: The action to take on expired checkpoints (currently "delete" is the only accepted option).
  • sweep_interval_minutes: How frequently (in minutes) the system checks for expired checkpoints.
  • default_ttl: The default lifespan of a checkpoint in minutes.

Here's an example setting a default TTL of 30 days (43200 minutes):

{
  "dependencies": ["."],
  "graphs": {
    "chat": "./chat/graph.py:graph"
  },
  "checkpointer": {
    "ttl": {
      "strategy": "delete",
      "sweep_interval_minutes": 10,
      "default_ttl": 43200
    }
  }
}

In this example, checkpoints older than 30 days will be deleted, and the check runs every 10 minutes.

Basic Configuration

{
  "graphs": {
    "chat": "./src/graph.ts:graph"
  }
}

Commands

Usage

The base command for the LangGraph CLI is langgraph.

langgraph [OPTIONS] COMMAND [ARGS]

The base command for the LangGraph.js CLI is langgraphjs.

npx @langchain/langgraph-cli [OPTIONS] COMMAND [ARGS]

We recommend using npx to always use the latest version of the CLI.

dev

Run LangGraph API server in development mode with hot reloading and debugging capabilities. This lightweight server requires no Docker installation and is suitable for development and testing. State is persisted to a local directory.

Note

Currently, the CLI only supports Python >= 3.11.

Installation

This command requires the "inmem" extra to be installed:

pip install -U "langgraph-cli[inmem]"

Usage

langgraph dev [OPTIONS]

Options

Option Default Description
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables
--host TEXT 127.0.0.1 Host to bind the server to
--port INTEGER 2024 Port to bind the server to
--no-reload Disable auto-reload
--n-jobs-per-worker INTEGER Number of jobs per worker. Default is 10
--debug-port INTEGER Port for debugger to listen on
--help Display command documentation

Run LangGraph API server in development mode with hot reloading capabilities. This lightweight server requires no Docker installation and is suitable for development and testing. State is persisted to a local directory.

Usage

npx @langchain/langgraph-cli dev [OPTIONS]

Options

Option Default Description
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables
--host TEXT 127.0.0.1 Host to bind the server to
--port INTEGER 2024 Port to bind the server to
--no-reload Disable auto-reload
--n-jobs-per-worker INTEGER Number of jobs per worker. Default is 10
--debug-port INTEGER Port for debugger to listen on
--help Display command documentation

build

Build LangGraph Cloud API server Docker image.

Usage

langgraph build [OPTIONS]

Options

Option Default Description
--platform TEXT Target platform(s) to build the Docker image for. Example: langgraph build --platform linux/amd64,linux/arm64
-t, --tag TEXT Required. Tag for the Docker image. Example: langgraph build -t my-image
--pull / --no-pull --pull Build with latest remote Docker image. Use --no-pull for running the LangGraph Cloud API server with locally built images.
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables.
--help Display command documentation.

Build LangGraph Cloud API server Docker image.

Usage

npx @langchain/langgraph-cli build [OPTIONS]

Options

Option Default Description
--platform TEXT Target platform(s) to build the Docker image for. Example: langgraph build --platform linux/amd64,linux/arm64
-t, --tag TEXT Required. Tag for the Docker image. Example: langgraph build -t my-image
--no-pull Use locally built images. Defaults to false to build with latest remote Docker image.
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables.
--help Display command documentation.

up

Start LangGraph API server. For local testing, requires a LangSmith API key with access to LangGraph Cloud closed beta. Requires a license key for production use.

Usage

langgraph up [OPTIONS]

Options

Option Default Description
--wait Wait for services to start before returning. Implies --detach
--postgres-uri TEXT Local database Postgres URI to use for the database.
--watch Restart on file changes
--debugger-base-url TEXT http://127.0.0.1:[PORT] URL used by the debugger to access LangGraph API.
--debugger-port INTEGER Pull the debugger image locally and serve the UI on specified port
--verbose Show more output from the server logs.
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables.
-d, --docker-compose FILE Path to docker-compose.yml file with additional services to launch.
-p, --port INTEGER 8123 Port to expose. Example: langgraph up --port 8000
--pull / --no-pull pull Pull latest images. Use --no-pull for running the server with locally-built images. Example: langgraph up --no-pull
--recreate / --no-recreate no-recreate Recreate containers even if their configuration and image haven't changed
--help Display command documentation.

Start LangGraph API server. For local testing, requires a LangSmith API key with access to LangGraph Cloud closed beta. Requires a license key for production use.

Usage

npx @langchain/langgraph-cli up [OPTIONS]

Options

Option Default Description
--wait Wait for services to start before returning. Implies --detach
--postgres-uri TEXT Local database Postgres URI to use for the database.
--watch Restart on file changes
-c, --config FILE langgraph.json Path to configuration file declaring dependencies, graphs and environment variables.
-d, --docker-compose FILE Path to docker-compose.yml file with additional services to launch.
-p, --port INTEGER 8123 Port to expose. Example: langgraph up --port 8000
--no-pull Use locally built images. Defaults to false to build with latest remote Docker image.
--recreate Recreate containers even if their configuration and image haven't changed
--help Display command documentation.

dockerfile

Generate a Dockerfile for building a LangGraph Cloud API server Docker image.

Usage

langgraph dockerfile [OPTIONS] SAVE_PATH

Options

Option Default Description
-c, --config FILE langgraph.json Path to the configuration file declaring dependencies, graphs and environment variables.
--help Show this message and exit.

Example:

langgraph dockerfile -c langgraph.json Dockerfile

This generates a Dockerfile that looks similar to:

FROM langchain/langgraph-api:3.11

ADD ./pipconf.txt /pipconfig.txt

RUN PIP_CONFIG_FILE=/pipconfig.txt PYTHONDONTWRITEBYTECODE=1 pip install --no-cache-dir -c /api/constraints.txt langchain_community langchain_anthropic langchain_openai wikipedia scikit-learn

ADD ./graphs /deps/__outer_graphs/src
RUN set -ex && \
    for line in '[project]' \
                'name = "graphs"' \
                'version = "0.1"' \
                '[tool.setuptools.package-data]' \
                '"*" = ["**/*"]'; do \
        echo "$line" >> /deps/__outer_graphs/pyproject.toml; \
    done

RUN PIP_CONFIG_FILE=/pipconfig.txt PYTHONDONTWRITEBYTECODE=1 pip install --no-cache-dir -c /api/constraints.txt -e /deps/*

ENV LANGSERVE_GRAPHS='{"agent": "/deps/__outer_graphs/src/agent.py:graph", "storm": "/deps/__outer_graphs/src/storm.py:graph"}'
Updating your langgraph.json file

The langgraph dockerfile command translates all the configuration in your langgraph.json file into Dockerfile commands. When using this command, you will have to re-run it whenever you update your langgraph.json file. Otherwise, your changes will not be reflected when you build or run the dockerfile.

Generate a Dockerfile for building a LangGraph Cloud API server Docker image.

Usage

npx @langchain/langgraph-cli dockerfile [OPTIONS] SAVE_PATH

Options

Option Default Description
-c, --config FILE langgraph.json Path to the configuration file declaring dependencies, graphs and environment variables.
--help Show this message and exit.

Example:

npx @langchain/langgraph-cli dockerfile -c langgraph.json Dockerfile

This generates a Dockerfile that looks similar to:

FROM langchain/langgraphjs-api:20

ADD . /deps/agent

RUN cd /deps/agent && yarn install

ENV LANGSERVE_GRAPHS='{"agent":"./src/react_agent/graph.ts:graph"}'

WORKDIR /deps/agent

RUN (test ! -f /api/langgraph_api/js/build.mts && echo "Prebuild script not found, skipping") || tsx /api/langgraph_api/js/build.mts
Updating your langgraph.json file

The npx @langchain/langgraph-cli dockerfile command translates all the configuration in your langgraph.json file into Dockerfile commands. When using this command, you will have to re-run it whenever you update your langgraph.json file. Otherwise, your changes will not be reflected when you build or run the dockerfile.

Comments