Skip to content

Tools

Tools are a way to encapsulate a function and its input schema in a way that can be passed to a chat model that supports tool calling. This allows the model to request the execution of this function with specific inputs.

You can either define your own tools or use prebuilt integrations that LangChain provides.

Define simple tools

You can pass a vanilla function to create_react_agent to use as a tool:

API Reference: create_react_agent

from langgraph.prebuilt import create_react_agent

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

create_react_agent(
    model="anthropic:claude-3-7-sonnet",
    tools=[multiply]
)

create_react_agent automatically converts vanilla functions to LangChain tools.

Customize tools

For more control over tool behavior, use the @tool decorator:

API Reference: tool

from langchain_core.tools import tool

@tool("multiply_tool", parse_docstring=True)
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.

    Args:
        a: First operand
        b: Second operand
    """
    return a * b

You can also define a custom input schema using Pydantic:

from pydantic import BaseModel, Field

class MultiplyInputSchema(BaseModel):
    """Multiply two numbers"""
    a: int = Field(description="First operand")
    b: int = Field(description="Second operand")

@tool("multiply_tool", args_schema=MultiplyInputSchema)
def multiply(a: int, b: int) -> int:
   return a * b

For additional customization, refer to the custom tools guide.

Hide arguments from the model

Some tools require runtime-only arguments (e.g., user ID or session context) that should not be controllable by the model.

You can put these arguments in the state or config of the agent, and access this information inside the tool:

API Reference: InjectedState | RunnableConfig

from langgraph.prebuilt import InjectedState
from langgraph.prebuilt.chat_agent_executor import AgentState
from langchain_core.runnables import RunnableConfig

def my_tool(
    # This will be populated by an LLM
    tool_arg: str,
    # access information that's dynamically updated inside the agent
    state: Annotated[AgentState, InjectedState],
    # access static data that is passed at agent invocation
    config: RunnableConfig,
) -> str:
    """My tool."""
    do_something_with_state(state["messages"])
    do_something_with_config(config)
    ...

Disable parallel tool calling

Some model providers support executing multiple tools in parallel, but allow users to disable this feature.

For supported providers, you can disable parallel tool calling by setting parallel_tool_calls=False via the model.bind_tools() method:

API Reference: init_chat_model

from langchain.chat_models import init_chat_model

def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

model = init_chat_model("anthropic:claude-3-5-sonnet-latest", temperature=0)
tools = [add, multiply]
agent = create_react_agent(
    # disable parallel tool calls
    model=model.bind_tools(tools, parallel_tool_calls=False),
    tools=tools
)

agent.invoke({"messages": "what's 3 + 5 and 4 * 7? make both calculations in parallel"})

Return tool results directly

Use return_direct=True to return tool results immediately and stop the agent loop:

API Reference: tool

from langchain_core.tools import tool

@tool(return_direct=True)
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[add]
)

agent.invoke({"messages": "what's 3 + 5?"})

Force tool use

To force the agent to use specific tools, you can set the tool_choice option in model.bind_tools():

API Reference: tool

from langchain_core.tools import tool

@tool(return_direct=True)
def greet(user_name: str) -> int:
    """Greet user."""
    return f"Hello {user_name}!"

tools = [greet]

agent = create_react_agent(
    model=model.bind_tools(tools, tool_choice={"type": "tool", "name": "greet"}),
    tools=tools
)

agent.invoke({"messages": "Hi, I am Bob"})

Avoid infinite loops

Forcing tool usage without stopping conditions can create infinite loops. Use one of the following safeguards:

Handle tool errors

By default, the agent will catch all exceptions raised during tool calls and will pass those as tool messages to the LLM. To control how the errors are handled, you can use the prebuilt ToolNode — the node that executes tools inside create_react_agent — via its handle_tool_errors parameter:

from langgraph.prebuilt import create_react_agent

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    if a == 42:
        raise ValueError("The ultimate error")
    return a * b

# Run with error handling (default)
agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[multiply]
)
agent.invoke({"messages": "what's 42 x 7?"})
from langgraph.prebuilt import create_react_agent, ToolNode

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    if a == 42:
        raise ValueError("The ultimate error")
    return a * b

tool_node = ToolNode(
    [multiply],
    handle_tool_errors=False  # (1)!
)
agent_no_error_handling = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=tool_node
)
agent_no_error_handling.invoke({"messages": "what's 42 x 7?"})
  1. This disables error handling (enabled by default). See all available strategies in the API reference.
from langgraph.prebuilt import create_react_agent, ToolNode

def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    if a == 42:
        raise ValueError("The ultimate error")
    return a * b

tool_node = ToolNode(
    [multiply],
    handle_tool_errors=(
        "Can't use 42 as a first operand, you must switch operands!"  # (1)!
    )
)
agent_custom_error_handling = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=tool_node
)
agent_custom_error_handling.invoke({"messages": "what's 42 x 7?"})
  1. This provides a custom message to send to the LLM in case of an exception. See all available strategies in the API reference.

See API reference for more information on different tool error handling options.

Prebuilt tools

LangChain supports a wide range of prebuilt tool integrations for interacting with APIs, databases, file systems, web data, and more. These tools extend the functionality of agents and enable rapid development.

You can browse the full list of available integrations in the LangChain integrations directory.

Some commonly used tool categories include:

  • Search: Bing, SerpAPI, Tavily
  • Code interpreters: Python REPL, Node.js REPL
  • Databases: SQL, MongoDB, Redis
  • Web data: Web scraping and browsing
  • APIs: OpenWeatherMap, NewsAPI, and others

These integrations can be configured and added to your agents using the same tools parameter shown in the examples above.

Comments